Skip to main content
Log in

Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The purpose of this study was to develop docetaxel-poly (lactide-co-glycolide) (PLGA) loaded nanoparticles by using nanoprecipitation method and optimize the relative parameters to obtain nanoparticles with higher encapsulation efficiency and smaller size. The physicochemical characteristics of nanoparticles were studied. The optimized parameters were as follows: the oil phase was mixture of acetone and ethanol, concentration of tocopheryl polyethylene glycol succinate (TPGS) was 0.2%, the ratio of oil phase to water phase was 1:5, and the theoretical drug concentration was 5%. The optimized nanoparticles were spherical with size between 130 and 150 nm. The encapsulation efficiency was (40.83±2.1)%. The in vitro release exhibited biphasic pattern. The results indicate that docetaxel-PLGA nanoparticles were successfully fabricated and may be used as the novel vehicles for docetaxel, which would replace Taxotere® and play great roles in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrioli R, Pozzessere D, Messinese S, et al. Weekly low-dose docetaxel in advanced non-small cell lung cancer previously treated with two chemotherapy regimens. Lung Cancer, 2003,39(1):85–89

    Article  PubMed  Google Scholar 

  2. Coleman RE, Howell A, Eggleton SP, et al. Phase II study of docetaxel in patients with liver metastases from breast cancer. Ann Oncol, 2000,11(5):541–546

    Article  PubMed  CAS  Google Scholar 

  3. Glisson BS, Murphy BA, Frenette G, et al. Phase II trial of docetaxel and cisplatin combination chemotherapy in patients with squamous cell carcinoma of the head and neck. J Clin Oncol, 2002,20(6):1593–1599

    Article  PubMed  CAS  Google Scholar 

  4. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med, 1997,48:353–374

    Article  PubMed  CAS  Google Scholar 

  5. Weiss RB, Donehower RC, Wiernik PH, et al. Hypersensitivity reactions from Taxol. J Clin Oncol, 1990,8(7):1263–1268

    PubMed  CAS  Google Scholar 

  6. Chu CY, Yang CH, Yang CY, et al. Fixed erythrodysaesthesia plaque due to intravenous injection of docetaxel. Br J Dermatol, 2000,142(4):808–811

    Article  PubMed  CAS  Google Scholar 

  7. Lavelle F, Bissery MC, Combeau C, et al. Preclinical evaluation of docetaxel (Taxotere). Semin Oncol, 1995,22(2 Suppl 4):3–16

    CAS  Google Scholar 

  8. Xu Z, Chen L, Gu W, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009,30(2):226–232

    Article  PubMed  Google Scholar 

  9. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009,3(1):16–20

    Article  PubMed  CAS  Google Scholar 

  10. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol, 2008,26(1):57–64

    Article  PubMed  CAS  Google Scholar 

  11. Saha RN, Vasanthakumar S, Bende G, et al. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol, 2010,27(7):215–231

    Article  PubMed  CAS  Google Scholar 

  12. Bennis S, Chapey C, Couvreur P, et al. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcy-anoacrylate nanospheres against multidrug-resistant cells in culture. Eur J Cancer, 1994,30A(1):89–93

    Article  PubMed  CAS  Google Scholar 

  13. Magenheim B, Benita S. Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharm Sci, 1991,1:221–241

    CAS  Google Scholar 

  14. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997,28(1):5–24

    Article  PubMed  Google Scholar 

  15. Gan CW, Feng SS. Transferrin-conjugated nanoparticles of poly (lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 2010,31(30):7748–7757

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Z, Mei L, Feng SS. Vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate-based nanomedicine. Nanomedicine (Lond), 2012,7(11):1645–1647

    Article  CAS  Google Scholar 

  17. Saxena V, Hussain MD. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). J Biomed Nanotechnol, 2013,9(7):1146–1154

    Article  PubMed  CAS  Google Scholar 

  18. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci, 2005,25(4–5):445–453

    Article  PubMed  CAS  Google Scholar 

  19. Collnot EM, Baldes C, Schaefer UF. Vitamin E TPGS p-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm, 2010,7(3):642–651

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Lee SH, Gan CW, et al. In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res, 2008,25(8):1925–1935

    Article  PubMed  Google Scholar 

  21. Prashant C, Dipak M, Yang CT, et al. Superparamagnetic iron oxide-loaded poly (lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials, 2010,31(21):5588–5597

    Article  PubMed  CAS  Google Scholar 

  22. Win KY, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lacticcoglycolid acid) nanoparticles for paclitaxel formulation. Biomaterials, 2006, 27(10):2285–2291

    Article  PubMed  CAS  Google Scholar 

  23. Barichello JM, Morishita M, Takayama K, et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm, 1999,25(4):471–476

    Article  PubMed  CAS  Google Scholar 

  24. Dong Y, Feng SS. Methoxyl poly(ethylene glycol)poly-(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials, 2004,25(14):2843–2849

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Z, Feng SS. Nanoparticles of poly (lactide)/Vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials, 2006,27(2):262–270

    Article  PubMed  Google Scholar 

  26. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release, 2003,86(1):33–48

    Article  PubMed  CAS  Google Scholar 

  27. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release, 2002,80(1–3):129–144

    Article  PubMed  CAS  Google Scholar 

  28. Kakran M, Sahoo NG, Antipina MN, et al. Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles. Mater Sci Eng C Mater Biol Appl, 2013,33(5):2864–2870

    Article  PubMed  CAS  Google Scholar 

  29. Song X, Zhao Y, Hou S, et al. Dual agents loaded PLGA nanoparticles: Systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm, 2008,69(2):445–453

    Article  PubMed  CAS  Google Scholar 

  30. Lamprecht A, Ubrich N, Hombreiro Pérez M, et al. Influences of process parameters on nanoparticle preparation performed by a double emission pressure homogenization technique. Int J Pharm, 2000,196(2):177–182

    Article  PubMed  CAS  Google Scholar 

  31. Zhao L, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanopart icles of biodegradable polymers: in vitro and in vivo studies. J Pharm Sci, 2010, 99(8):3552–3560

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Feng SS. Nanoparticles of poly (lacide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials, 2006,27(2):262–270

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-jun Peng  (彭振军).

Additional information

The authors contributed equally to this work.

This project was supported by National Natural Science Foundation of China (No. H1610 81172121).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Zhang, Zj., Yuan, Y. et al. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 754–758 (2013). https://doi.org/10.1007/s11596-013-1192-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1192-x

Key words

Navigation