Skip to main content
Log in

Damage processes of polypropylene fiber reinforced mortar in different fiber content revealed by acoustic emission behavior

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The performances of the cement-based materials can be improved by the incorporation of polypropylene fiber, but the damage processes become more complex with different fiber contents at the same time. The acoustic emission (AE) technology can achieve the global monitoring of internal damage in materials. The evolution process of failure mode and damage degree of polypropylene fiber reinforced mortar and concrete were analyzed by measuring the AE energy, RA value, AF value and b value. It was found that the cement matrix cracked on the initial stage, the cracks further developed on the medium stage and the fibers were pulled out on the last stage. The matrix cracked with minor injury cracks, but the fiber broke with serious damage cracks. The cumulative AE energy was proportional to the polypropylene fiber reinforced concrete and mortar’s ductility. The damage mode and damage degree can be judged by identifying the damage stage obtained by the analysis of the AF value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaguru P. Contribution of Fibers to Crack Reduction of Cement Composites the Initial and Final Setting Period[J]. ACI Mater. J., 1994, 91(3): 280–288

    Google Scholar 

  2. Mindess S, Francis Young J, Darwin D. Concrete[M]. NJ: Prentice Hall, 2003

    Google Scholar 

  3. Gao D, Yan D, Li X. Splitting Strength of GGBFS Concrete Incorporating with Steel Fiber and Polypropylene Fiber after Exposure to Elevated Temperatures[J]. Fire Safety J., 2012, 54(54): 67–73

    Article  Google Scholar 

  4. Bošnjak J, Ožbolt J, Hahn R. Permeability Measurement on High Strength Concrete without and with Polypropylene Fibers at Elevated Temperatures using a New Test Setup[J]. Cem. Concr. Res., 2013, 53: 104–111

    Article  Google Scholar 

  5. Qadi A L, Arabi N S, Mustapha B, et al. Effect of Polypropylene Fibers on Thermogravimetric Properties of Self-compacting Concrete at Elevated Temperatures[J]. Fire Mater., 2013, 37(3): 177–186

    Article  Google Scholar 

  6. Grdic Z J, Curcic G A T, Ristic N S, et al. Abrasion Resistance of Concrete Micro-reinforced with Polypropylene Fibers[J]. Constr. Build. Mater., 2012, 27(1): 305–312

    Article  Google Scholar 

  7. Wu Y, Sun Q, Fang H, et al. Surface-treated Polypropylene Fiber for Reinforced Repair Mortar Cementitious Composites[J]. Compos. Interfaces, 2014, 21(9): 787–796

    Article  Google Scholar 

  8. Behfarnia K, Behravan A. Application of High Performance Polypropylene Fibers in Concrete Lining of Water Tunnels[J]. Mater. Des., 2014, 55(6): 274–279

    Article  Google Scholar 

  9. Segre N, tonella E, Joekes I. Evaluation of the Stability of Polypropylene Fibers in Environments Aggressive to Cement-based Materials[J]. Cem. Concr. Res., 1998, 28(1): 75–81

    Article  Google Scholar 

  10. Sideris K K, Manita P, Chaniotakis E. Performance of Thermally Damaged Fiber Reinforced Concretes[J]. Constr. Build. Mater., 2009, 23(3): 1232–1239

    Article  Google Scholar 

  11. Ouaar A, Doghri I, Delannay L, et al. Micromechanics of the Deformation and Damage of Steel Fiber-reinforced Concrete[J]. Int. J. Damage Mech., 2007, 16(2): 227–260

    Article  Google Scholar 

  12. Nia A A, Hedayatian M, Nili M, et al. An Experimental and Numerical Study on How Steel and Polypropylene Fibers Affect the Impact Resistance in Fiber-reinforced Concrete[J]. int. J. Impact Eng., 2012, 46(6): 62–73

    Google Scholar 

  13. W Jianhua, L Jun, Y Haiping. The Study on Steel Fiber Reinforced Concrete under Dynamic Compression by Damage Mechanics Method[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(7): 1759–1767

    Google Scholar 

  14. Zhang P, Li Q. Effect of Polypropylene Fiber on Durability of Concrete Composite Containing Fly Ash and Silica Fume[J]. Composites Part B, 2013, 45(1): 1587–1594

    Article  Google Scholar 

  15. Zhang Y F, Liu H, Chen J P, et al. Numerical Simulation on PPFRC with Different Contents[J]. Appl. Mech. Mater., 2013, 477-478: 1019–1025

    Article  Google Scholar 

  16. Shihada S. Effect of Polypropylene Fibers on Concrete Fire Resistance[J]. J. Civ. Eng. Manag., 2011, 17(2): 259–264

    Article  Google Scholar 

  17. Saje D, Bandelj B, Šušteršic J, et al. Shrinkage of Polypropylene Fiber-reinforced High-performance Concrete[J]. J. Mater. Civ. Eng., 2011, 23(7): 941–952

    Article  Google Scholar 

  18. Zhang P, Li Q. Effect of Polypropylene Fiber on Fracture Properties of High-performance Concrete Composites[J]. Sci. Eng. of Compos. Mater., 2012, 19(4): 407–414

    Article  Google Scholar 

  19. Nili M, Afroughsabet V. The Effects of Silica Fume and Polypropylene Fibers on the Impact Resistance and Mechanical Properties of Concrete[J]. Constr. Build. Mater., 2010, 24(6): 927–933

    Article  Google Scholar 

  20. Wu Y, Wenhui Z. Effect of Polypropylene Fibers on the Long-term Tensile Strength of Concrete[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(1): 52–55

    Article  Google Scholar 

  21. Izaguirre A, Lanas J, Alvarez J I. Effect of a Polypropylene Fibre on the Behaviour of Aerial Lime-based Mortars[J]. Constr. Build. Mater., 2011, 25(2): 992–1000

    Article  Google Scholar 

  22. Kakooei S, Akil H M, Jamshidi M, et al. The Effects of Polypropylene Fibers on the Properties of Reinforced Concrete Structures[J]. Constr. Build. Mater., 2012, 27(1): 73–77

    Article  Google Scholar 

  23. Singh S, Shukla A, Brown R. Pullout Behavior of Polypropylene Fibers from Cementitious Matrix[J]. Cem. Concr. Res., 2004, 34(10): 1919–1925

    Article  Google Scholar 

  24. Wang C, Zhang Y, Ma A. Investigation into the Fatigue Damage Process of Rubberized Concrete and Plain Concrete by AE Analysis[J]. J. Mater. Civ. Eng., 2010, 23(7): 953–960

    Article  Google Scholar 

  25. Wu K, Chen B, Yao W. Study on the AE Characteristics of Fracture Process of Mortar, Concrete and Steel-fiber-reinforced Concrete Beams[J]. Cem. Concr. Res., 2000, 30(9): 1495–1500

    Article  Google Scholar 

  26. Kim B, Weiss W J. Using Acoustic Emission to Quantify Damage in Restrained Fiber-reinforced Cement Mortars[J]. Cem. Concr. Res., 2003, 33(2): 207–214

    Article  Google Scholar 

  27. Aggelis D G, Soulioti D V, Barkoula N M, et al. Influence of Fiber Chemical Coating on the Acoustic Emission Behavior of Steel Fiber Reinforced Concrete[J]. Cem. Concr. Compos., 2012, 34(1): 62–67

    Article  Google Scholar 

  28. Shah S P, Weiss W J, Wei Y. Shrinkage Cracking -Can It Be Prevented?[J]. Concr. Int., 1998, 20(4): 51–55

    Google Scholar 

  29. Grzybowski M, Shah S P. Shrinkage Cracking of Fiber Reinforced Concrete[J]. ACI Mater. J., 1990, 87(2): 138–148

    Google Scholar 

  30. Japan Federation of Construction Materials In Ustries. Monitoring Method for Active Cracks in Concrete by AE[S]. JCMS-III B5706. 2003, 2003

  31. Ohno K, Ohtsu M. Crack Classification in Concrete Based on Acoustic Emission[J]. Constr. Build. Mater., 2010, 24(12): 2339–2346

    Article  Google Scholar 

  32. Ohtsu M, tomoda Y. Corrosion Process in Reinforced Concrete Identified by Acoustic Emission[J]. Mater. Trans., 2007, 48(6): 1184–1189

    Article  Google Scholar 

  33. Sagar R Vidya, Prasad BK Raghu, Kumar S Shantha. An Experimental Study on Cracking Evolution in Concrete and Cement Mortar by the B-value Analysis of Acoustic Emission Technique[J]. Cem. Concr. Res., 2012, 42(3): 1094–1104

    Article  Google Scholar 

  34. Kurz JH, Finck F, Grosse CU, et al. Stress Drop and Stress Redistribution in Concrete Quantified Over Time by the B-value Analysis[J]. Struct. Health Monit., 2005, 5(1):69–81

    Article  Google Scholar 

  35. Farhidzadeh A, Dehghan-Niri E, Salamone S, et al. Monitoring Crack Propagation in Reinforced Concrete Shear Walls by Acoustic Emission[J]. J.Struct. Eng., 2012, 139(12)

    Google Scholar 

  36. Sagar R V, Prasad B K R. A Review of Recent Developments in Parametric Based Acoustic Emission Techniques Applied to Concrete Structures[J]. Nondestruct. Test. Eva., 2012, 27(1): 47–68

    Article  Google Scholar 

  37. Shah S G, Kishen J M C. Use of Acoustic Emissions in Flexural Fatigue Crack Growth Studies on Concrete[J]. Eng. Fract. Mech., 2012, 87: 36–47

    Article  Google Scholar 

  38. Zhou M, Li B, Shen W. Influences of Polypropylene Fiber and SBR Polymer Latex on Abrasion Resistance of Cement Mortar[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(4): 624–627

    Article  Google Scholar 

  39. Trainor K J, Foust B W, Landis E N. Measurement of Energy Dissipation Mechanisms in Fracture of Fiber-reinforced Ultrahigh-strength Cement-based Composites[J]. J. Eng. Mech., 2014, 139(7): 771–779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang  (王岩).

Additional information

Funded by National Natural Science Foundation of China (No. 51009058) and Postdoctoral Science Foundation of China (No. 2011M501160)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, S., Xu, Z. et al. Damage processes of polypropylene fiber reinforced mortar in different fiber content revealed by acoustic emission behavior. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 155–163 (2018). https://doi.org/10.1007/s11595-018-1800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1800-5

Keywords

Navigation