Skip to main content
Log in

Gold-loaded polymeric micelles with temperature-modulated catalytic activity

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Four-armed amphiphilic block copolymers, polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM)4, were synthesized by atom transfer radical polymerization (ATRP). (PS-b-PNIPAM)4 self-assembled into micelles with PS block as core and thermoresponsive PNIPAM block as corona. The gold nanoparticles (Au NPs) with average diameter about 5.8 nm were immobilized on the surfaces of the micelles by the reduction of the corresponding ions. The micelle-supported gold nanoparticles (Au-micelles) were applied to catalyze the reduction of p-nitrophenol. Moreover, the activity of the Au-micelle catalyst could be modulated by the temperature and the Au-micelles could be easily recovered by changing the temperature and recycled four times with high catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M G Debije, M P de Haas, J M Warman, et al. Optoelectronic Properties of Quasi-Linear, Self-assembled Platinum Complexes: Pt-Pt Distance Dependence[J]. Adv. Funct. Mater., 2004, 14(4): 323–328

    Article  Google Scholar 

  2. K A Kacprzak, O Lopez-Acevedo, H Häkkinen, et al. Theoretical Characterization of Cyclic Thiolated Copper, Silver, and Gold Clusters[J]. J. Phys. Chem. C, 2010, 114(32): 13571–13576

    Article  Google Scholar 

  3. C Wang, H F Yin, S Dai, et al. A General Approach to Noble Metal-Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation[J]. Chem. Mater., 2010, 22(10): 3277–3282

    Article  Google Scholar 

  4. G M Gross, D A Nelson, J W Grate, et al. Monolayer-Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography[J]. Anal. Chem., 2003, 75(17): 4558–4564

    Article  Google Scholar 

  5. X J Wang, C Wang, L S Cheng, et al. Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy[J]. J. Am. Chem. Soc., 2012, 134(17): 7414–7422

    Article  Google Scholar 

  6. G K Das, B C Heng, S C Ng, et al. Gadolinium Oxide Ultranarrow Nanorods as Multimodal Contrast Agents for Optical and Magnetic Resonance Imaging[J]. Langmuir, 2010, 26(11): 8959–8965

    Article  Google Scholar 

  7. C N R Rao, G U Kulkarni, P J Thomas, et al. Size-Dependent Chemistry: Properties of Nanocrystals[J]. Chem. Eur. J., 2002, 8(1): 28–35

    Article  Google Scholar 

  8. J Amici, M Sangermano, E Celasco, et al. Photochemical Synthesis of Gold-Polyethylenglycol Core-Shell Nanoparticles[J]. Eur. Polym. J., 2011, 47(6): 1250–1255

    Article  Google Scholar 

  9. S P Wang, C H Wang, S Nakamura. Preparation of Functional Materials by Blending Copolyesters with PVA with Metal Complex Formation of Polymer Blends[J]. J. Wuhan Univ. Technol., 1998, 13(1): 33–41, 48

    Article  Google Scholar 

  10. M Martin, F Manea, R Fiammengo, et al. Metallodendrimers as Transphosphorylation Catalysts[J]. J. Am. Chem. Soc., 2007, 129(22): 6982–6983

    Article  Google Scholar 

  11. K Esumi, R Isono, T Yoshimura. Antioxidant Action by Gold-PAMAM Dendrimer Nanocomposites[J]. Langmuir, 2004, 20(7): 2536–2538

    Article  Google Scholar 

  12. J D Gilbertson, G Vijayaraghavan, K J Stevenson, et al. Air and Water Free Solid-Phase Synthesis of Thiol Stabilized Au Nanoparticles with Anchored, Recyclable Dendrimer Templates[J]. Langmuir, 2007, 23(22): 11239–11245

    Article  Google Scholar 

  13. E Pavlopoulou, G Portale, K E Christodoulakis, et al. Following the Synthesis of Metal Nanoparticles within pH-Responsive Microgel Particles by SAXS[J]. Macromolecules, 2010, 43(23): 9828–9836

    Article  Google Scholar 

  14. M Jokar, R A Rahman, N A Ibrahim. Layer by Layer Deposition of Polyethylene Glycol Capped Silver Nanoparticles/Chitosan on Polyethylene Substrate[J]. Int. J. Polym. Mater., 2012, 61(5): 371–383

    Article  Google Scholar 

  15. A K Ghosh, A Samanta, P Bandyopadhyay. Cu2+-Induced Micellar Charge Selective Fluorescence Response of Acridine Orange: Effect of Micellar Charge, pH, and Mechanism[J]. J. Phys. Chem. B, 2011, 115(41): 11823–11830

    Article  Google Scholar 

  16. M Antonietti, F Grohn, J Hartmann, et al. Nonclassical Shapes of Noble-Metal Colloids by Synthesis in Microgel Nanoreactors[J]. Angew. Chem. Int. Ed., 1997, 36(19): 2080–2083

    Article  Google Scholar 

  17. J E Wong, A K Gaharwar, D Müller-Schulte, et al. Dual-stimuli Responsive PNIPAM Microgel Achieved via Layer-by-Layer Assembly: Magnetic and Thermoresponsive[J]. J. Colloid Interf. Sci. 2008, 324(1-2): 47–54

    Article  Google Scholar 

  18. Y Lu, M Ballauff. Thermosensitive Core-Shell Microgels: From Colloidal Model Systems to Nanoreactors[J]. Prog. Polym. Sci., 2011, 36(6): 767–792

    Article  Google Scholar 

  19. C Echeverria, C Mijangos. UCST-Like Hybrid PAAm-AA/Fe3O4 Microgels. Effect of Fe3O4 Nanoparticles on Morphology, Thermosensitivity and Elasticity[J]. Langmuir, 2011, 27(13): 8027–8035

    Article  Google Scholar 

  20. D Liu, K Nakashima. Synthesis of Hollow Metal Oxide Nanospheres by Templating Polymeric Micelles with Core-Shell-Corona Architecture[J]. Inorg. Chem., 2009, 48(9): 3898–3900

    Article  Google Scholar 

  21. G Giorgi, L Ceraulo, V T Liveri. Surfactant Self-Assembly in the Gas Phase: Bis(2-ethylhexyl)sulfosuccinate-Alkaline Metal Ion Aggregates[J]. J. Phys. Chem. B, 2008, 112(5): 1376–1382

    Article  Google Scholar 

  22. A B Smetana, J S Wang, J J Boeckl, et al. Deposition of Ordered Arrays of Gold and Platinum Nanoparticles with an Adjustable Particle Size and Interparticle Spacing Using Supercritical CO2 [J]. J. Phys. Chem. C, 2008, 112(7): 2294–2297

    Article  Google Scholar 

  23. T Yang, Z Li, L Wang, et al. Synthesis, Characterization, and Self-Assembly of Protein Lysozyme Monolayer-Stabilized Gold Nanoparticles[J]. Langmuir, 2007, 23(21): 10533–10538

    Article  Google Scholar 

  24. U Hasegawa, A J Vander Vlies, E Simeoni, et al. Carbon Monoxide-Releasing Micelles for Immunotherapy[J]. J. Am. Chem. Soc., 2010, 132(51): 18273–18280

    Article  Google Scholar 

  25. S Yusa, S Yamago, M Sugahara, et al. Thermo-Responsive Diblock Copolymers of Poly(N-isopropylacrylamide) and Poly(N-vinyl-2-pyrroridone) Synthesized via Organotellurium-Mediated Controlled Radical Polymerization (TERP)[J]. Macromolecules, 2007, 40(16): 5907–5915

    Article  Google Scholar 

  26. X Chen, Y An, D Zhao, et al. Core-Shell-Corona Au-Micelle Composites with a Tunable Smart Hybrid Shell[J]. Langmuir, 2008, 24(15): 8198–8204

    Article  Google Scholar 

  27. Z Q Peng, L M Guo, Z H Zhang, et al. Micelle-Assisted One-Pot Synthesis of Water-Soluble Polyaniline-Gold Composite Particles[J]. Langmuir, 2006, 22(26): 10915–10918

    Article  Google Scholar 

  28. X Chen, D Y Zhao, Y L An, et al. Formation and Catalytic Activity of Spherical Composites with Surfaces Coated with Gold Nanoparticles[J]. J. Colloid Interf. Sci., 2008, 322(2): 414–420

    Article  Google Scholar 

  29. J Xia, S Gaynor, K Matyjaszewski. Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization of Acrylates at Ambient Temperature[J]. Macromolecules, 1998, 31(17): 5958–5959

    Article  Google Scholar 

  30. J B Li, L Q Shi, Y L An, et al. Reverse Micelles of Star-Block Copolymer as Nanoreactors for Preparation of Gold Nanoparticles[J]. Polymer, 2006, 47(26): 8480–8487

    Article  Google Scholar 

  31. X W Lou, C Yuan, E Rhoades, et al. Encapsulation and Ostwald Ripening of Au and Au-Cl Complex Nanostructures in Silica Shells[J]. Adv. Funct. Mater., 2006, 16(13): 1679–1684

    Article  Google Scholar 

  32. A I Kozlov, A P Kozlova, K Asakura, et al. Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and As-Precipitated Metal-Hydroxide Precursors: Effect of Preparation Conditions on the Catalytic Performance[J]. J. Catal., 2000, 196(1): 56–65

    Article  Google Scholar 

  33. Y Mei, Y Lu, F Polzer, et al. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels[J]. Chem. Mater., 2007, 19(5): 1062–1069

    Article  Google Scholar 

  34. Y Wang, G Wei, W Zhang, et al. Responsive Catalysis of Thermoresponsive Micelle-supported Gold Nanoparticles[J]. J. Mol. Catal. A, 2007, 266(1-2): 233–238

    Article  Google Scholar 

  35. S P Bawane, S B Sawant. Hydrogenation of p-Nitrophenol to Metol using Raney Nickel Catalyst: Reaction Kinetics[J]. Appl. Catal. A, 2005, 293: 162–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqing Chen  (陈明清).

Additional information

Funded by the National Natural Science Foundation of China (No.51173072) and Research and Innovation Program for Graduate Colleges and Universities (Nos.CXZZ11_0469, JUDCF09006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Shi, D., Li, J. et al. Gold-loaded polymeric micelles with temperature-modulated catalytic activity. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 30, 1092–1097 (2015). https://doi.org/10.1007/s11595-015-1277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-015-1277-4

Keywords

Navigation