Skip to main content
Log in

An environmentally friendly sepiolite/Cu2O/Cu ternary composite as anode material for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cu2O/Cu composite has been widely used as a photocatalyst for hydrogen production. However, little attention has been paid to the electrochemical performance of Cu2O/Cu composite in Li-ion batteries (LIBs). Natural clay sepiolite is an impressive inorganic template for the nanocrystallization of functional materials. Besides, the sepiolite shows high wettability towards liquid electrolytes and its pseudocapacitive behavior can increase the specific discharge capacity of the electrodes. Thus, in this paper, natural clay sepiolite was employed to prepare a nanosized sepiolite/Cu2O/Cu ternary composite anode for LIBs. The as-prepared environmentally friendly sepiolite/Cu2O/Cu anode shows excellent electrochemical performance compared with Cu2O and sepiolite. The ternary composite can deliver a specific discharge capacity around 650 mAhg−1 and 295 mAhg−1 at 0.1 A g−1 and 1.0 A g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie A et al (2019) Three-dimensional nanoflower MnCrOx/sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature. Chem Eng J 370:897–905

    Article  CAS  Google Scholar 

  2. Chen Q et al (2018) Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. J Mater Chem A 6(15):6356–6362

    Article  CAS  Google Scholar 

  3. Deng C et al (2019) Sepiolite-based separator for advanced Li-ion batteries. Appl Surf Sci 484:446–452

    Article  CAS  Google Scholar 

  4. Lescano L et al (2014) Alternative methodologies for sepiolite defibering. Appl Clay Sci 95:378–382

    Article  CAS  Google Scholar 

  5. Valentín JL et al (2007) Novel anhydrous unfolded structure by heating of acid pre-treated sepiolite. Appl Clay Sci 36(4):245–255

    Article  Google Scholar 

  6. Alonso-Domínguez D et al (2018) New Fe2O3-clay@C nanocomposite anodes for Li-ion batteries obtained by facile hydrothermal processes. Nanomaterials 8(10):808

    Article  Google Scholar 

  7. Hou K et al (2017) Tin oxide-carbon-coated sepiolite nanofibers with enhanced lithium-ion storage property. Nanoscale Res Lett 12(1):215

    Article  Google Scholar 

  8. Jiang W et al (2020) Novel sepiolite-based materials for lithium- and sodium-ion storage. Energ Technol 8(3):1901262

    Article  CAS  Google Scholar 

  9. Zhou G et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  10. Ding Y et al (2008) Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries. Mater Lett 62(19):3410–3412

    Article  CAS  Google Scholar 

  11. Li X, Dhanabalan A, Wang C (2011) Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. J Power Sources 196(22):9625–9630

    Article  CAS  Google Scholar 

  12. Ding Y et al (2011) Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method. Mater Res Bull 46(12):2403–2407

    Article  CAS  Google Scholar 

  13. Yang Z et al (2018) Hierarchical C/SiOx/TiO2 ultrathin nanobelts as anode materials for advanced lithium ion batteries. Nanotechnology 29(40):405602

    Article  Google Scholar 

  14. Subalakshmi P, Sivashanmugam A (2017) CuO nano hexagons, an efficient energy storage material for Li- ion battery application. J Alloy Compd 690:523–531

    Article  CAS  Google Scholar 

  15. Ko S et al (2012) Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 24(32):4451–4456

    Article  CAS  Google Scholar 

  16. Wang C et al (2014) Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl Mater Interfaces 6(2):1243–1250

    Article  CAS  Google Scholar 

  17. Huang XH et al (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56(14):4960–4965

    Article  CAS  Google Scholar 

  18. Sun J et al (2020) V2O3/MoS2 microspheres as a high-performance anode for Li-storage. Applied Surface Science 513:145756

    Article  CAS  Google Scholar 

  19. Li L, Raji A-RO, Tour JM (2013) Graphene-wrapped MnO2–graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25(43):6298–6302

    Article  CAS  Google Scholar 

  20. Yin Z et al (2012) CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem Commun 20:40–43

    Article  CAS  Google Scholar 

  21. Mai YJ et al (2011) CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta 56(5):2306–2311

    Article  CAS  Google Scholar 

  22. Li N et al (2013) Microwave-assisted synthesis of dual-conducting Cu2O@Cu–graphene system with improved electrochemical performance as anode material for lithium batteries. Chem Asian J 8(9):1960–1965

    Article  CAS  Google Scholar 

  23. Zhou H et al (2018) Facile one-step synthesis of Cu2O@Cu sub-microspheres composites as anode materials for lithium ion batteries. J Mater Sci Technol 34(7):1085–1090

    Article  CAS  Google Scholar 

  24. Liu H et al (2021) Stimulating the reversibility of Sb2S3 anode for high-performance potassium-ion batteries. Small 17(10):2008133

    Article  CAS  Google Scholar 

  25. Li X-Y, Qu J-K, Yin H-Y (2021) Electrolytic alloy-type anodes for metal-ion batteries. Rare Met 40(2):329–352

    Article  Google Scholar 

  26. Jiang W et al (2021) Preparation and electrochemical properties of sepiolite supported Co3O4 nanoparticles. Appl Clay Sci 203:106020

    Article  CAS  Google Scholar 

  27. Yang Y et al (2016) In-situ growth of self-assembled 3D Cu2O@Cu foam with enhanced electrochemical properties. Electrochim Acta 221:56–61

    Article  CAS  Google Scholar 

  28. Li P et al (2018) Concave structure of Cu2O truncated microcubes: PVP assisted 100 facet etching and improved facet-dependent photocatalytic properties. CrystEngComm 20(41):6580–6588

    Article  CAS  Google Scholar 

  29. Hu X et al (2019) Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline. J Colloid Interface Sci 533:238–250

    Article  CAS  Google Scholar 

  30. Dou H et al (2018) Band structure engineering of graphitic carbon nitride via Cu2+/Cu+ doping for enhanced visible light photoactivity. Mater Chem Phys 214:482–488

    Article  CAS  Google Scholar 

  31. He J et al (2017) Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl Catal B 203:917–926

    Article  CAS  Google Scholar 

  32. Cao K et al (2020) Boosting coulombic efficiency of conversion-reaction anodes for potassium-ion batteries via confinement effect. Adv Func Mater 30(52):2007712

    Article  CAS  Google Scholar 

  33. Liu H et al (2022) Heterostructure engineering of ultrathin SnS2/Ti3C2Tx nanosheets for high-performance potassium-ion batteries. J Colloid Interface Sci 606:167–176

    Article  CAS  Google Scholar 

  34. Yang R et al (2020) Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met 39(10):1159–1164

    Article  Google Scholar 

  35. Hu Z-L et al (2021) Graphene oxide wrapped magnetic nanoparticle composites induced by SiO2 coating with excellent regenerability. Int J Miner Metall Mater 28(12):2001–2007

    Article  CAS  Google Scholar 

  36. Wang Q et al (2021) Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries. Int J Miner Metall Mater 28(10):1629–1635

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 51702371), High-level Talent Gathering Project in Hunan Province (2019RS1059), and Natural Science Foundation of Hunan Province (No. 2019JJ40093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhuai Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 765 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Jiang, W., Peng, J. et al. An environmentally friendly sepiolite/Cu2O/Cu ternary composite as anode material for Li-ion batteries. Ionics 28, 1091–1098 (2022). https://doi.org/10.1007/s11581-021-04432-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04432-z

Keywords

Navigation