Skip to main content
Log in

Penta graphene: a superior anode material for Mg-ion batteries with high specific theoretical capacity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Magnesium ion batteries (MIB’s) have the potential to replace the existing lithium ion batteries due to its environment friendly and cost effective nature if anode materials with high theoretical capacity and fast ions diffusion are explored. Using density functional theory, we studied the potential application of penta graphene (PG) as anode material for magnesium ion battery. The unique bonding environment of sp2-hybridizing carbon atoms in PG offers multiple adsorption sites for Mg ions resulting in an ultra-high specific theoretical capacity of 1653.035 mAh/g, low diffusion barriers in the range of 0.04 to 0.30 eV, and low open circuit voltage (OCV) of 0.35 V. Ab-initio molecular dynamics (AIMD) simulation demonstrates the high thermodynamic stability of 37.07% Mg ions loaded PG. The unique structure, low mass density, and the outstanding electrochemical performance of PG suggest it as a potential anode material for Mg-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang JGZY (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  2. Man Z, Li P, Zhou D, Zang R, Li P, Liu S, Li X, Wu GWY (2019) Highperformance lithium-organic batteries by achieving 16 lithium storage in poly (imine-anthraquinone). J Mater Chem A 7:2368–2375

    Article  CAS  Google Scholar 

  3. Ahmad A, Imani A, Mao L et al (2019) A bifunctional and free-standing organic composite film with high flexibility and good tensile strength for tribological and electrochemical applications. Adv Mater Technol 4:1900617. https://doi.org/10.1002/admt.201900617

    Article  CAS  Google Scholar 

  4. Muhammad Imran, Younis Umer, Wei Wu, Xie Huanhuan, Abdul Khaliq QS (2020) Three-dimensional porous phosphorus-graphdiyne as a universal anode material for both K-and Ca-ion batteries with high performance. J Power Sources 480:228876

    Article  CAS  Google Scholar 

  5. Khan AA, Ahmad R, Ahmad I (2021) Silicon carbide and III-Nitrides nanosheets: promising anodes for Mg-ion batteries. Mater Chem Phys 257 https://doi.org/10.1016/j.matchemphys.2020.123785

  6. Younis U, Muhammad I, Kawazoe Y, Sun Q (2020) Design of tetracene-based metallic 2D carbon materials for Na- and K-Ion batteries. Appl Surf Sci 521 https://doi.org/10.1016/j.apsusc.2020.146456

  7. Gharehzadeh Shirazi S, Nasrollahpour M, Vafaee M (2020) Investigation of boron-doped graphdiyne as a promising anode material for sodium-ion batteries: a computational study. ACS Omega 5 https://doi.org/10.1021/acsomega.0c00422

  8. Leisegang T, Meutzner F, Zschornak M, Münchgesang W, Schmid R, Nestler T, Eremin RA, Kabanov AA, Blatov VA and Meyer DC (2019) The aluminum-ion battery: a sustainable and seminal concept? Front Chem 7:268. https://doi.org/10.3389/fchem.2019.00268

  9. Er D, Li J, Naguib M, Gogotsi Y, VBS (2014) Ti 3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. Appl Mater Interfaces 6:11173–11179

    Article  CAS  Google Scholar 

  10. Olsson E, Hussain T, Karton A, Cai Q (2020) The adsorption and migration behavior of divalent metals (Mg, Ca, and Zn) on pristine and defective graphene. Carbon N Y 163 https://doi.org/10.1016/j.carbon.2020.03.028

  11. Kim SW, Seo DH, Ma X, et al (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2

  12. Pan B, Huang J, Feng Z, et al (2016) Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv Energy Mater 6 https://doi.org/10.1002/aenm.201600140

  13. Puspamitra Panigrahi, Shashi Bhusan Mishra T, Hussain, Birabar Ranjit Kumar Nanda, RA (2020) Density functional theory studies of Si2BN nanosheets as anode materials for magnesium ion batteries. ACS Appl Nano Mater https://doi.org/10.1021/acsanm.0c01747

  14. Novák P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium? Electrochim Acta 45 https://doi.org/10.1016/S0013-4686(99)00216-9

  15. Cheng Y, Shao Y, Parent LR, et al (2015) Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv Mater 27 https://doi.org/10.1002/adma.201502378

  16. Han X, Liu C, Sun J, et al (2018) Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. RSC Adv 8 https://doi.org/10.1039/c7ra12400g

  17. Chen C, Wang J, Zhao Q, et al (2016) Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 nanoribbons as high-performance anode of rechargeable Mg-Ion batteries. ACS Energy Lett 1 https://doi.org/10.1021/acsenergylett.6b00515

  18. Xu Y, Deng X, Li Q, et al (2019) Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5 https://doi.org/10.1016/j.chempr.2019.02.014

  19. Tang H, Peng Z, Wu L, et al (2018) Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem Energy Rev 1 https://doi.org/10.1007/s41918-018-0007-y

  20. Niu J, Gao H, Ma W, et al (2018) Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Mater 14 https://doi.org/10.1016/j.ensm.2018.05.023

  21. Niu J, Yin K, Gao H, Song M, Ma W, Peng ZZZ (2019) Composition- and sizemodulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries. Nanoscale 32:15279–15288

    Article  Google Scholar 

  22. Shao Y, Gu M, Li X, et al (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14 https://doi.org/10.1021/nl403874y

  23. Liang HJ, Gu ZY, Zheng XY, et al (2021) Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. J Energy Chem 59 https://doi.org/10.1016/j.jechem.2020.11.039

  24. Dai C, Sun G, Hu L, et al (2020) Recent progress in graphene‐based electrodes for flexible batteries. InfoMat https://doi.org/10.1002/inf2.12039

  25. Dou B, Yan J, Chen Q, et al (2021) Development of an innovative nitrite sensing platform based on the construction of carbon-layer-coated In2O3 porous tubes. Sensors Actuators, B Chem 328 https://doi.org/10.1016/j.snb.2020.129082

  26. Hou BH, Wang YY, Ning QL, et al (2019) Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism. Adv Mater 31 https://doi.org/10.1002/adma.201903125

  27. Liang HJ, Hou BH, Li WH, et al (2019) Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries:: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ Sci 12 https://doi.org/10.1039/c9ee02759a

  28. Zhang X, Hu J, Cheng Y, Yang HY, Yao Y, Yang SA (2016) Borophene as an extremely high capacity electrode material for LiIon and Na-Ion batteries. Nanoscale 8:15340–15347

    Article  CAS  PubMed  Google Scholar 

  29. Xiao B, Li Y Chun, Yu X fang, Cheng J bo (2016) Penta-graphene: a promising anode material as the Li/Na-Ion battery with both extremely high theoretical capacity and fast charge/discharge rate. ACS Appl Mater Interfaces 8 https://doi.org/10.1021/acsami.6b12727

  30. Kulish V V., Malyi OI, Persson C, Wu P (2015) Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys Chem Chem Phys 17 https://doi.org/10.1039/c5cp01502b

  31. Zhao S, Kang W, Xue J (2014) The potential application of phosphorene as an anode material in Li-ion batteries. J Mater Chem A 2 https://doi.org/10.1039/c4ta04368e

  32. Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15 https://doi.org/10.1021/nl504336h

  33. Karmakar S, Chowdhury C, Datta A (2016) Two-dimensional group IV monochalcogenides: anode materials for Li-ion batteries. J Phys Chem C 120 https://doi.org/10.1021/acs.jpcc.6b04152

  34. Sun QL, Dai Y, Ma YD, Jing T, Wei W, Huang BB (2016) Ab initio prediction and characterization of mo 2C monolayer as anodes for lithium-ion and sodium-ion batteries. J Phys Chem Lett 7:937–943

    Article  CAS  PubMed  Google Scholar 

  35. Cao Y, Pan F, Wang H, et al (2020) Density functional theory calculations for the evaluation of FePS3 as a promising anode for Mg Ion batteries. Trans Tianjin Univ 26 https://doi.org/10.1007/s12209-020-00253-9

  36. Zhang S, Zhou J, Wang Q, et al (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci U S A 112 https://doi.org/10.1073/pnas.1416591112

  37. Xu W, Zhang G, Li B (2015) Thermal conductivity of pentagraphene from molecular dynamics study. J Chem Phys 143:154703

    Article  PubMed  Google Scholar 

  38. Wu X, Varshney V, Lee J, et al (2016) Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett 16 https://doi.org/10.1021/acs.nanolett.6b01536

  39. Liu H, Qin G, Lin Y, Hu M (2016) Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Lett 16 https://doi.org/10.1021/acs.nanolett.6b01311

  40. Stauber T, Beltrán JI, Schliemann J (2016) Tight-binding approach to pentagraphene. Sci Rep 6 https://doi.org/10.1038/srep22672

  41. Wang FQ, Yu J, Wang Q, et al (2016) Lattice thermal conductivity of penta-graphene. Carbon N Y 105 https://doi.org/10.1016/j.carbon.2016.04.054

  42. Rajbanshi B, Sarkar S, Mandal B, Sarkar P (2016) Energetic and electronic structure of penta-graphene nanoribbons. Carbon N Y 100 https://doi.org/10.1016/j.carbon.2016.01.014

  43. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  44. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  46. Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni 2P(001) surface: the importance of ensemble effect. J Am Chem Soc 127:14871–14878. https://doi.org/10.1021/ja0540019

    Article  CAS  PubMed  Google Scholar 

  47. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  48. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  49. Lu FCT (2012) Multwfn: a multifunctional wavefunction analyser. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GERM, Cheeseman JR, Scalmani G, Barone V, Mennucci BP, Al G et al (2009) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  51. Chao Zhang Yu, Cao XD, Ding X-Y, Leilei Chen B-SL, Wang D-Q (2020) Ab-initio study of the electronic and magnetic properties of boron- and nitrogen-doped pentagraphene. Nanomaterials 10:816

    Article  Google Scholar 

  52. Robertson AW, Montanari B, He K, Allen CS, Ya Wu, Harrison NM, Kirkland AI, Warner JH (2013) Structural reconstruction of the graphene monovacancy. ACS Nano 7:4495–4502

    Article  CAS  PubMed  Google Scholar 

  53. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5

  54. Sharma BR, Manjanath A, Singh AK (2014) Pentahexoctite: a new two-dimensional allotrope of carbon. Sci Rep 4 https://doi.org/10.1038/srep07164

  55. Crespi VH, Benedict LX, Cohen ML, Louie SG (1996) Prediction of a pure-carbon planar covalent metal. Phys Rev B - Condens Matter Mater Phys 53 https://doi.org/10.1103/PhysRevB.53.R13303

  56. Lu H, Li SD (2013) Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C 1 https://doi.org/10.1039/c3tc30302k

  57. Long M, Tang L, Wang D, et al (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5 https://doi.org/10.1021/nn102472s

  58. Enyashin AN, Ivanovskii AL (2011) Graphene allotropes. Status Solidi B 248:1879–1883

    Article  CAS  Google Scholar 

  59. Sheng XL, Yan QB, Ye F, et al (2011) T-carbon: a novel carbon allotrope. Phys Rev Lett 106 https://doi.org/10.1103/PhysRevLett.106.155703

  60. Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63

    Article  CAS  PubMed  Google Scholar 

  61. Zhao X, Liu Y, Inoue S, et al (2004) Smallest carbon nanotube is 3 Å in diameter. Phys Rev Lett 92 https://doi.org/10.1103/PhysRevLett.92.125502

  62. Li X, Dai Y, Li M, et al (2015) Stable Si-based pentagonal monolayers: high carrier mobilities and applications in photocatalytic water splitting. J Mater Chem A 3 https://doi.org/10.1039/c5ta05770a

  63. Ding Y, Wang Y (2015) Hydrogen-induced stabilization and tunable electronic structures of penta-silicene: a computational study. J Mater Chem C 3 https://doi.org/10.1039/c5tc02504d

  64. Aierken Y, Leenaerts O, Peeters FM (2016) First-principle study of stable few-layer penta-silicene. Phys Chem Chem Phys 18:18486–18492

    Article  CAS  PubMed  Google Scholar 

  65. Lopez-Bezanilla A, Littlewood PB (2015) σ−π-band inversion in a novel two-dimensional material. J Phys Chem C 119:19469–19474

    Article  CAS  Google Scholar 

  66. Li J, Fan X, Wei Y, Liu H, Li S, Zhao P, Chen G (2016) Half-metallicity and ferromagnetism in penta-AlN2 nanostructure. Sci Rep 6:33060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Schusteritsch G, Pickard CJ, et al (2016) Two dimensional ice from first principles: structures and phase transitions. Phys Rev Lett 116 https://doi.org/10.1103/PhysRevLett.116.025501

  68. Schmidt CL, Dinnebier R, Wedig U, Jansen M (2007) Crystal structure and chemical bonding of the high-temperature phase of AgN3. Inorg Chem 46 https://doi.org/10.1021/ic061963n

  69. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford, England

    Google Scholar 

  70. Kock PLAPU (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747

    Article  Google Scholar 

  71. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102 https://doi.org/10.1021/jp9805048

  72. Lipkowski P, Grabowski SJ, Robinson JLTL, JL, (2004) C—H–-H dihydrogen bond: an ab initioand topological analysis. J Phys Chem A 108:10865

    Article  CAS  Google Scholar 

  73. Olsson E, Hussain T, Karton QCA (2020) The adsorption and migration behavior of divalent metals (Mg, Ca, and Zn) on pristine and defective graphene. Carbon N Y 163:276–287

    Article  CAS  Google Scholar 

  74. Mao Y, Soleymanabadi H (2020) Graphyne as an anode material for Mg-ion batteries: a computational study. J Mol Liq 308 https://doi.org/10.1016/j.molliq.2020.113009

  75. Zhang Z, Zhang Y, Li Y, et al (2018) MnSb1 Z. Zhang, Y. Zhang, Y. Li, J. Lin, D. G. Truhlar and S. Huang, Chem. Mater., DOI:https://doi.org/10.1021/acs.chemmater.7b05311.2S4 Monolayer as an anode material for metal-ion batteries. Chem Mater 30 https://doi.org/10.1021/acs.chemmater.7b05311

  76. Ye XJ, Zhu GL, Liu J, et al (2019) Monolayer, bilayer, and heterostructure arsenene as potential anode materials for magnesium-ion batteries: a first-principles study. J Phys Chem C https://doi.org/10.1021/acs.jpcc.9b02399

  77. Er D, Li J, Naguib M, et al (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6 https://doi.org/10.1021/am501144q

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Ahmad.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2562 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Muhammad, I., Ahmad, R. et al. Penta graphene: a superior anode material for Mg-ion batteries with high specific theoretical capacity. Ionics 27, 4819–4828 (2021). https://doi.org/10.1007/s11581-021-04239-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04239-y

Keywords

Navigation