Skip to main content

Advertisement

Log in

Nest-like N-doped hierarchical porous active carbon formed by sacrifice template for enhanced supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A nest-like N-doped hierarchical porous active carbon (N-HAC) with higher specific surface area is achieved successfully by melamine cyanurate (MCA) sacrifice template molding and assistant chemical activation of NH4Cl and CaCl2. The results testify that the nest-like hierarchical porous character of N-HAC can form an interconnecting structure and introduce plenty of supercapacitor reactive sites, which can facilitate the ion diffusion/migration among the material, while nitrogen doping in N-HAC can change the charge distribution of N-HAC and then promote the electron transfer. Attributing to the synergistic effect of the hierarchical porous structure and nitrogen doping, N-HAC800 displays the highest specific capacitance (284.6 F g−1 at 1 A g−1 and 183.1 F g−1 even at 20 A g−1) and superior cycle stability (80.4% after 5000 cycles at 100 mV s−1). This study results prove that the N-doped hierarchical porous active carbon is a promising material for energy storage application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z (2020) Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energ Environ Sci 13:3917–3949. https://doi.org/10.1039/d0ee02162h

    Article  CAS  Google Scholar 

  2. Hao J, Li X, Zhang S, Yang F, Zeng X, Zhang S, Bo G, Wang C, Guo Z (2020) Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater 30:2001263. https://doi.org/10.1002/adfm.202001263

    Article  CAS  Google Scholar 

  3. Wang J-G, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B (2018) One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127:85–92. https://doi.org/10.1016/j.carbon.2017.10.084

    Article  CAS  Google Scholar 

  4. Huang C, Gao AM, Yi FY, Wang YC, Shu D, Liang YS, Zhu ZH, Ling JZ, Hao JN (2021) Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chem Eng J 419:129643. https://doi.org/10.1016/j.cej.2021.129643

    Article  CAS  Google Scholar 

  5. Jian X, Li H, Li H, Li Y, Shang Y (2021) Flexible and freestanding MoS2/rGO/CNT hybrid fibers for highcapacity all-solid supercapacitors. Carbon 172:132–137. https://doi.org/10.1016/j.carbon.2020.09.095

    Article  CAS  Google Scholar 

  6. Gao A, Zeng D, Liu Q, Yi F, Shu D, Cheng H, Zhou X, Li S, Zhang F (2019) Molecular self-assembly assisted synthesis of carbon nanoparticle-anchored MoS2 nanosheets for high-performance supercapacitors. Electrochim Acta 295:187–194. https://doi.org/10.1016/j.electacta.2018.10.109

    Article  CAS  Google Scholar 

  7. Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47:2680–2721. https://doi.org/10.1039/c7cs00787f

    Article  CAS  PubMed  Google Scholar 

  8. Deng YF, Xie Y, Zou KX, Ji XL (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173. https://doi.org/10.1039/c5ta08620e

    Article  CAS  Google Scholar 

  9. Parveen N, Ansari SA, Ansari MO, Cho MH (2017) Manganese dioxide nanorods intercalated reduced graphene oxide nanocomposite toward high performance electrochemical supercapacitive electrode materials. J Colloid Interf sci 506:613–619. https://doi.org/10.1016/j.jcis.2017.07.087

    Article  CAS  Google Scholar 

  10. Cao C, Zhou Y, Ubnoske S, Zang J, Cao Y, Henry P, Parker CB, Glass JT (2019) Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv Energy Mater 9:1900618. https://doi.org/10.1002/aenm.201900618

    Article  CAS  Google Scholar 

  11. Chen H, Liu T, Mou J, Zhang W, Jiang Z, Liu J, Huang J, Liu M (2019) Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63:103836. https://doi.org/10.1016/j.nanoen.2019.06.032

    Article  CAS  Google Scholar 

  12. Yu D, Zhai S, Jiang W, Goh K, Wei L, Chen X, Jiang R, Chen Y (2015) Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv Mater 27:4895–4901. https://doi.org/10.1002/adma.201501948

    Article  CAS  PubMed  Google Scholar 

  13. Cheng H, Zhou X, Gao A, Yi F, Shu D, Song X, Zeng R, He C, Li S, Zeng D (2018) Supermolecule polymerization derived porous nitrogen-doped reduced graphene oxide as a high-performance electrode material for supercapacitors. Electrochim Acta 292:20–30. https://doi.org/10.1016/j.electacta.2018.09.092

    Article  CAS  Google Scholar 

  14. Ferrero GA, Sevilla M, Fuertes AB (2015) Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 88:239–251. https://doi.org/10.1016/j.carbon.2015.03.014

    Article  CAS  Google Scholar 

  15. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013. https://doi.org/10.1039/c2ta00028h

    Article  CAS  Google Scholar 

  16. Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954. https://doi.org/10.1039/c2ta00627h

    Article  CAS  Google Scholar 

  17. Jia H, Zhang H, Wan S, Sun J, Xie X, Sun L (2019) Preparation of nitrogen-doped porous carbon via adsorption-doping for highly efficient energy storage. J Power Sources 433:226712. https://doi.org/10.1016/j.jpowsour.2019.226712

    Article  CAS  Google Scholar 

  18. Zhao MY, Cui XX, Xu YS, Chen LL, He ZJ, Yang SG, Wang Y (2018) An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance. Nanoscale 10:15379–15386. https://doi.org/10.1039/c8nr04194f

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Lou M, Yuan X, Dong W, Dong C, Bi H, Huang F (2017) Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon 118:511–516. https://doi.org/10.1016/j.carbon.2017.03.071

    Article  CAS  Google Scholar 

  20. Zhou DD, Du YJ, Song YF, Wang YG, Wang CX, Xia YY (2013) Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. J Mater Chem A 1:1192–1200. https://doi.org/10.1039/c2ta00533f

    Article  CAS  Google Scholar 

  21. Wang KX, Zhang JA, Xia W, Zou RQ, Guo JH, Gao ZM, Yan WF, Guo SJ, Xu Q (2015) A dual templating route to three-dimensionally ordered mesoporous carbon nanonetworks: tuning the mesopore type for electrochemical performance optimization. J Mater Chem A 3:18867–18873. https://doi.org/10.1039/c5ta04632g

    Article  CAS  Google Scholar 

  22. Lu YH, Zhang SL, Yin JM, Bai CC, Zhang JH, Li YX, Yang Y, Ge Z, Zhang M, Wei L, Ma MX, Ma YF, Chen YS (2017) Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 124:64–71. https://doi.org/10.1016/j.carbon.2017.08.044

    Article  CAS  Google Scholar 

  23. Jun YS, Lee EZ, Wang X, Hong WH, Stucky GD, Thomas A (2013) From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23:3661–3667. https://doi.org/10.1002/adfm.201203732

    Article  CAS  Google Scholar 

  24. Ai W, Jiang J, Zhu J, Fan Z, Wang Y, Zhang H, Huang W, Yu T (2015) Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv Energy Mater 5:1500559. https://doi.org/10.1002/aenm.201500559

    Article  CAS  Google Scholar 

  25. Ye Z, Wang F, Jia C, Mu K, Yu M, Lv Y, Shao Z (2017) Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem Eng J 330:1166–1173. https://doi.org/10.1016/j.cej.2017.08.070

    Article  CAS  Google Scholar 

  26. Feng H, Zheng M, Dong H, Xiao Y, Hu H, Sun Z, Long C, Cai Y, Zhao X, Zhang H, Lei B, Liu Y (2015) Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge. J Mater Chem A 3:15225–15234. https://doi.org/10.1039/c5ta03217b

    Article  CAS  Google Scholar 

  27. Liu M, Gan L, Xiong W, Xu Z, Zhu D, Chen L (2014) Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J Mater Chem A 2:2555–2562. https://doi.org/10.1039/c3ta14445c

    Article  CAS  Google Scholar 

  28. Huo S, Liu M, Wu L, Liu M, Xu M, Ni W, Yan YM (2018) Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J Power Sources 387:81–90. https://doi.org/10.1016/j.jpowsour.2018.03.061

    Article  CAS  Google Scholar 

  29. Groen JC, Peffer LAA, Pérez-Ramı́rez J, (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor Mesopor Mater 60:1–17. https://doi.org/10.1016/S1387-1811(03)00339-1

    Article  CAS  Google Scholar 

  30. Li Z, Cao L, Qin P, Liu X, Chen Z, Wang L, Pan D, Wu M (2018) Nitrogen and oxygen co-doped graphene quantum dots with high capacitance performance for micro-supercapacitors. Carbon 139:67–75. https://doi.org/10.1016/j.carbon.2018.06.042

    Article  CAS  Google Scholar 

  31. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  PubMed  Google Scholar 

  32. Guo H, Ding B, Wang J, Zhang Y, Hao X, Wu L, An Y, Dou H, Zhang X (2018) Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon 136:204–210. https://doi.org/10.1016/j.carbon.2018.04.079

    Article  CAS  Google Scholar 

  33. Ni L, Wang R, Wang H, Sun C, Sun B, Guo X, Jiang S, Shi Z, Jing W, Zhu L, Qiu S, Zhang Z (2018) Designing nanographitic domains in N-doped porous carbon foam for high performance supercapacitors. Carbon 139:1152–1159. https://doi.org/10.1016/j.carbon.2018.07.057

    Article  CAS  Google Scholar 

  34. Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293. https://doi.org/10.1016/j.carbon.2018.02.077

    Article  CAS  Google Scholar 

  35. Yu S, Sun N, Hu L, Wang L, Zhu Q, Guan Y, Xu B (2018) Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. J Power Sources 405:132–141. https://doi.org/10.1016/j.jpowsour.2018.10.033

    Article  CAS  Google Scholar 

  36. Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu YA (2016) Hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater 28:5222–5228. https://doi.org/10.1002/adma.201600586

    Article  CAS  PubMed  Google Scholar 

  37. Lin G, Ma R, Zhou Y, Hu C, Yang M, Liu Q, Kaskel S, Wang J (2018) Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J Colloid Interf sci 527:230–240. https://doi.org/10.1016/j.jcis.2018.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the following financial supporters of this work: the National Natural Science Foundation of China (Grant No. 21673086), and the Scientific and Technological Plan of Guangdong Province (lithium-ion capacitor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimei Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Shu, D., Yi, F. et al. Nest-like N-doped hierarchical porous active carbon formed by sacrifice template for enhanced supercapacitor. Ionics 27, 4461–4471 (2021). https://doi.org/10.1007/s11581-021-04184-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04184-w

Keywords

Navigation