Skip to main content
Log in

Freeze-drying-assisted fabrication of flexible graphene/SnO2 for high-rate lithium-ion batteries

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene-based tin dioxide (SnO2) composite electrodes for flexible lithium-ion batteries (LIBs) have received tremendous attention due to advantages of lightweight, excellent mechanical flexibility, and superior electrochemical performance. However, the restacking of graphene nanosheets and agglomeration of SnO2 nanoparticles during the drying processes limit the infiltration of electrolyte and transfer of lithium ions across graphene plane and into graphene interlayers, resulting in low reversible capacity and inferior high-rate cycle performance. Herein, a facile synthetic method involving a freeze-drying technique coupled with a mild hydrothermal reduction treatment is employed to fabricate flexible graphene/SnO2 paper (FGSP) electrode. The results show that the use of freeze-drying technology can not only increase the spacing of graphene nanosheets but also alleviate the agglomeration of SnO2 nanoparticles, thus improving the rate and cycle performance of FGSP electrode. As anode material for LIBs, the obtained FGSP electrode delivers high specific capacity (740 mAh·g−1 at 100 mA/g), excellent rate capability (406 mAh·g−1 at 2 A/g), and stable cycling stability. It demonstrates that this synthetic methodology can provide a favorable strategy for the ingenious preparation of electrode materials for high-performance FLIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lyu P, Liu X, Qu J, Zhao J, Huo YQu Z, Rao Z (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater 31:195–220

    Article  Google Scholar 

  2. Liu W, Zhi H, Yu X (2019) Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater 16:290–322

    Article  Google Scholar 

  3. Kumar R, Sahoo S, Joanni E, Singh RK, Tan WK, Kar KK, Matsuda A (2019) Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog Energ Combust 75:100786

    Article  Google Scholar 

  4. Liu Z, Li H, Zhu M, Huang Y, Tang Z, Pei Z, Wang Z, Shi Z, Liu J, Huang Y, Zhi C (2018) Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44:164–173

    Article  CAS  Google Scholar 

  5. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    Article  CAS  Google Scholar 

  6. Chen Y, Song B, Chen RM, Lu L, Xue J (2014) A study of the superior electrochemical performance of 3 nm SnO2 nanoparticles supported by graphene. J Mater Chem A 2:5688–5695

    Article  CAS  Google Scholar 

  7. Fang Z, Wang J, Wu H, Li Q, Fan S, Wang J (2020) Progress and challenges of flexible lithium ion batteries. J Power Sources 454:227932

    Article  CAS  Google Scholar 

  8. Yu X, Deng J, Yang X, Li J, Huang ZH, Li B, Kang F (2020) A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity. Nano Energy 67:104256

    Article  CAS  Google Scholar 

  9. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energ Environ Sci 4(9):3243

    Article  CAS  Google Scholar 

  10. Dong L, Liang G, Xu C, Liu W, Pan ZZ, Zhou E, Kang F, Yang QH (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248

    Article  CAS  Google Scholar 

  11. Liu Q, Wang L, Zhao K, Yan W, Liu M, Wei D, Xi L, Zhang J (2020) 3D branched rutile TiO2 @ rutile SnO2 nanorods array heteroarchitectures/carbon cloth with an adjustable band gap to enhance lithium storage reaction kinetics for flexible lithium-ion batteries. Electrochim Acta 354:136727

    Article  CAS  Google Scholar 

  12. Cai D, Wang S, Ding L, Lian P, Zhang S, Peng F, Wang H (2014) Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries. J Power Sources 254:198–203

    Article  CAS  Google Scholar 

  13. Ding C, Zhao Y, Yan D, Zhao Y, Zhou H, Li J, Jin H (2016) An insight into the convenience and efficiency of the freeze-drying route to construct 3D graphene-based hybrids for lithium-ion batteries. Electrochim Acta 221:124–132

    Article  CAS  Google Scholar 

  14. Dursun B, Topac E, Alibeyli R, Ata A, Ozturk O, Demir-Cakan R (2017) Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries. J Alloy Compd 728:1305–1314

    Article  CAS  Google Scholar 

  15. Yan J, Zhong M, Yu C, Zhang J, Ma M, Li L, Hao Q, Gao F, Tian Y, Huang Y, Shen W, Guo S (2020) Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries. Synthetic Metals 263:116364

    Article  CAS  Google Scholar 

  16. Zhao X, Li H, Han F, Dai M, Sun Y, Song Z, Han D, Niu L (2020) Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. J Phys Chem Solids 139:109301

    Article  CAS  Google Scholar 

  17. Hu T, Sun X, Sun H, Yu M, Lu F, Liu C, Lian J (2013) Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51:322–326

    Article  CAS  Google Scholar 

  18. Park SK, Seong CY, Yoo S, Piao Y (2016) Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery. Energy 99:266–273

    Article  CAS  Google Scholar 

  19. Guo J, Zhu H, Sun Y, Tang L, Zhang X (2017) Pie-like free-standing paper of graphene paper@Fe3O4 nanorod array@carbon as integrated anode for robust lithium storage. Chem Eng J 309:272–277

    Article  CAS  Google Scholar 

  20. Zhang ZLG, Dong Y, Zhao J, Wu Z (2018) Embedding Co3O4 nanoparticles into graphene nanoscrolls as anode for lithium ion batteries with superior capacity and outstanding cycling stability. Prog Nat Sci 28:212–217

    Article  CAS  Google Scholar 

  21. Gao T, Huang K, Qi X, Li H, Yang L, Zhong J (2014) Free-standing SnO2 nanoparticles@graphene hybrid paper for advanced lithium-ion batteries. Ceram Int 40(5):6891–6897

    Article  CAS  Google Scholar 

  22. Wan Y, Wang T, Lu H, Xu X, Zuo C, Wang Y, Teng C (2018) Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries. RSC Adv 8(21):11744–11748

    Article  CAS  Google Scholar 

  23. Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25(15):2152–2157

    Article  CAS  PubMed  Google Scholar 

  24. Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29(13):1605006

    Article  CAS  Google Scholar 

  25. Tian Q, Chen Y, Sui Z, Chen J, Yang L (2020) The sandwiched buffer zone enables porous SnO2@C micro-/nanospheres to toward high-performance lithium-ion battery anodes. Electrochim Acta 354:136699

    Article  CAS  Google Scholar 

  26. Fan L, Xiong D, Li X (2019) Enhanced lithium/sodium storage of SnO2/graphene aerogels nanocomposites. Mater Chem Phys 238:121870

    Article  CAS  Google Scholar 

  27. Haldorai Y, Huh YS, Han YK (2015) Surfactant-assisted hydrothermal synthesis of flower-like tin oxide/graphene composites for high-performance supercapacitors. New J Chem 39(11):8505–8512

    Article  CAS  Google Scholar 

  28. Liu X, Ma T, Sun L, Xu Y, Zhang J, Pinna N (2018) Enhancing the lithium storage performance of graphene/SnO2 nanorods by a carbon-riveting strategy. ChemSusChem 11(8):1321–1327

    Article  CAS  PubMed  Google Scholar 

  29. Pan L, Lu F, Du Y, Lu ZJ, Yang YJ, Ye T, Liang QF, Bando Y, Wang X (2019) Exposed facet engineering design of graphene-SnO2 nanorods for ultrastable Li-ion batteries. Energy Storage Mater 19:39–47

    Article  Google Scholar 

  30. Li Y, Zhao Y, Ma C, Shi J, Zhao Y (2020) Highly monodispersed graphene/SnO2 hybrid nanosheets as bifunctional anode materials of Li-ion and Na-ion batteries. J Alloy Compd 821:153506

    Article  CAS  Google Scholar 

  31. Liang J, Zhao Y, Guo L, Li L (2012) Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery. ACS Appl Mater Interfaces 4(11):5742–5748

    Article  CAS  PubMed  Google Scholar 

  32. Shu K, Wang C, Li S, Zhao C, Yang Y, Liu H, Wallace G (2015) Flexible free-standing graphene paper with interconnected porous structure for energy storage. J Mater Chem A 3(8):4428–4434

    Article  CAS  Google Scholar 

  33. Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. Acs Nano 5(11):8739–8749

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang DM, Li H, Zhai T, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22(13):2682–2690

    Article  CAS  Google Scholar 

  35. Wen H, Guo B, Kang W, Zhang C (2018) Free-standing nitrogen-doped graphene paper for lithium storage application. Rsc Adv 8(25):14032–14039

    Article  CAS  Google Scholar 

  36. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533

    Article  CAS  Google Scholar 

  37. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56(12):4532–4539

    Article  CAS  Google Scholar 

  38. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282

    Article  CAS  PubMed  Google Scholar 

  39. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Edit 48(42):7752–7777

    Article  CAS  Google Scholar 

  40. Ma J, Kong Y, Liu S, Li Y, Jiang J, Zhou Q, Huang Y, Han S (2020) Flexible phosphorus-doped graphene/metal–organic framework-derived porous Fe2O3 anode for lithium-ion battery. ACS Appl Energy Mater 3(12):11900–11906

    Article  CAS  Google Scholar 

  41. Zhang M, Lei D, Du Z, Yin X, Chen L, Li Q, Wang Y, Wang T (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21(6):1673–1676

    Article  CAS  Google Scholar 

  42. Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. Acs Nano 7(7):6001–6006

    Article  CAS  PubMed  Google Scholar 

  43. Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ (2017) Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater 29(6). https://doi.org/10.1002/adma.201603286

  44. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Muellen K (2012) Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  PubMed  Google Scholar 

  45. Xiao L, Wu D, Han S, Huang Y, Li S, He M, Zhang F, Feng X (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. Acs Appl Mater Interfaces 5(9):3764–3769

    Article  CAS  PubMed  Google Scholar 

  46. Fan H, Liang J, Zheng J, Qi J, Yang J, Hu P, Zhao H, Liu J, Guo L (2015) Free-standing SnO2/nitrogen-doped graphene films as high-performance binder-free electrodes for flexible lithium-ion batteries. Energy Technology 3(12):1225–1232

    Article  CAS  Google Scholar 

  47. Gao L, Wu G, Ma J, Jiang T, Chang B, Huang Y, Han S (2020) SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries. Acs Appl Mater & Interfaces 12(11):12982–12989

    Article  CAS  Google Scholar 

  48. Wang Q, Xing L, Xue X (2017) SnO2-graphene nanocomposite paper as both the anode and current collector of lithium ion battery with high performance and flexibility. Mater Lett 209:155–158

    Article  CAS  Google Scholar 

  49. Zhang X, Huang X, Geng X, Zhang X, Xia L, Zhong B, Zhang T, Wen G (2017) Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries. J Electroanal Chem 794:15–22

    Article  CAS  Google Scholar 

  50. Cheng Y, Huang J, Li J, Xu Z, Cao L, Ouyang H, Yan J, Qi H (2016) SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J Alloy Compd 658:234–240

    Article  CAS  Google Scholar 

  51. Xi Q, Huang J, Li J, Jie Y, Wang T, Cao L, Wang C, Guo P (2019) Sulfur-regulated the binding configurations of nitrogen in three-dimensional graphene to improve lithium storage kinetics. J Alloy Compd 786:1013–1020

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (no. 2017YFE0111500), the National Natural Science Foundation of China (nos. 51933007 and 51673123), and Opening Foundation of Sichuan Province Engineering Center for Powder Metallurgy (no. SC-FMYJ2017-08).

Author information

Authors and Affiliations

Authors

Contributions

Yinghao Shang: methodology, data curation; Xingang Liu: writing-original draft. Jihai Zhang: software, visualization. Chao Lu: software, writing - review and editing. Chuhong Zhang: writing - review and editing, project administration.

Corresponding authors

Correspondence to Chao Lu or Chuhong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Liu, X., Zhang, J. et al. Freeze-drying-assisted fabrication of flexible graphene/SnO2 for high-rate lithium-ion batteries. Ionics 27, 1967–1976 (2021). https://doi.org/10.1007/s11581-021-03985-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03985-3

Keywords

Navigation