Skip to main content
Log in

A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Binders have been confirmed to play a significant role in improving the cycling performance of Si anode. Some of natural biogum binders are exploited and related progresses are also achieved. However, the distinction of characteristics among different biogum binders as well as corresponding mechanisms and principles still remain to be elucidated. In this study, gum arabic (GA), guar gum (GG), and xanthan gum (XG) are selected for comparison. The highest initial Coulombic efficiency (ICE) of 90.4% is obtained with GA owing to diverse multiple interactions with Si nanoparticles to form a homogeneous covering that could protect Si core against being exposed to electrolyte and generating SEI film, as well as strong covalent network to suppress the isolation of Si, while plastic damage occurs during repeated volume change of Si because of irreversible bonding nature. By contrast, hydrogen bonding between polar –OH groups with self-healing nature provides Si anodes with GG and XG better cycling stability, while the optimized capacity of 1323 mAh g−1 after 100 cycles is retained with GG due to the extra ability to transfer Li+. This study provides the design and selection principles for binders applied in Si anodes of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Xiao Y, Wang T, Zhu YF, Hu HY, Tan SJ, Li S, Wang PF, Zhang W, Niu YB, Wang EH, Guo YJ, Yang X, Liu L, Liu YM, Li H, Guo XD, Yin YX, Guo YG (2020) Large-scale synthesis of the stable co-free layered oxide cathode by the synergetic contribution of multielement chemical substitution for practical sodium-ion battery. Research 2020:1469301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai G, Wu Z, Luo T, Zhong Y, Guo X, Zhang Z, Wang X, Zhong B (2020) 3D hierarchical rose-like Ni2P@rGO assembled from interconnected nanoflakes as anode for lithium ion batteries. RSC Adv 10:3936–3945

    Article  CAS  Google Scholar 

  3. Xiao Y, Zhu YF, Xiang W, Wu ZG, Li YC, Lai J, Li S, Wang E, Yang ZG, Xu CL, Zhong BH, Guo XD (2020) Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode. Angew Chem Int Ed 59:1491–1495

    Article  CAS  Google Scholar 

  4. Tian H, Wu Z, Zhong Y, Yang X, Guo X, Wang X, Zhong B (2021) Rapid in-situ fabrication of Fe3O4/Fe7S8@C composite as anode materials for lithium-ion batteries. Mater Res Bull 133:111021

    Article  CAS  Google Scholar 

  5. Xiao Y, Abbasi NM, Zhu YF, Li S, Tan SJ, Ling W, Peng L, Yang T, Wang L, Guo XD, Yin YX, Zhang H, Guo YG (2020) Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv Funct Mater 30:2001334

    Article  CAS  Google Scholar 

  6. Wu J, Zhang Q, Liu S, Long J, Wu Z, Zhang W, Pang WK, Sencadas V, Song R, Song W, Mao J, Guo Z (2020) Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 77:105118

    Article  CAS  Google Scholar 

  7. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842

    Article  CAS  Google Scholar 

  8. Pereira-Nabais C, Swiatowska J, Rosso M, Ozanam F, Seyeux A, Gohier A, Tran-Van P, Cassir M, Marcus P (2014) Effect of lithiation potential and cycling on chemical and morphological evolution of Si thin film electrode studied by ToF-SIMS. ACS Appl Mater & Interfaces 6:13023–13033

    Article  CAS  Google Scholar 

  9. Browning KL, Sacci RL, Doucet M, Browning JF, Kim JR, Veith GM (2020) The study of the binder poly(acrylic acid) and its role in concomitant solid-electrolyte interphase formation on Si anodes. ACS Appl Mater & Interfaces 12:10018–10030

    Article  CAS  Google Scholar 

  10. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  11. Zeng X, Li J, Liu L (2015) Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew Sustain Energ Rev 52:1759–1767

    Article  CAS  Google Scholar 

  12. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  CAS  Google Scholar 

  13. Kwon TW, Choi JW, Coskun A (2018) The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 47:2145–2164

    Article  CAS  PubMed  Google Scholar 

  14. Uchida S, Mihashi M, Yamagata M, Ishikawa M (2015) Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder. J Power Sources 273:118–122

    Article  CAS  Google Scholar 

  15. Santimetaneedol A, Tripuraneni R, Chester SA, Nadimpalli SPV (2016) Time-dependent deformation behavior of polyvinylidene fluoride binder: implications on the mechanics of composite electrodes. J Power Sources 332:118–128

    Article  CAS  Google Scholar 

  16. Xu Y, Yin G, Ma Y, Zuo P, Cheng X (2010) Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. J Power Sources 195:2069–2073

    Article  CAS  Google Scholar 

  17. Liu Y, Tai Z, Zhou T, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z, Liu HK (2017) An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv Mater 29:1703028

    Article  Google Scholar 

  18. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater & Interfaces 2:3004–3010

    Article  CAS  Google Scholar 

  19. Wei L, Chen C, Hou Z, Wei H (2016) Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep 6:19583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Lee SH, Cho M, Kim J, Lee Y (2016) Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl Mater & Interfaces 8:2658–2665

    Article  CAS  Google Scholar 

  21. Kwon TW, Jeong YK, Deniz E, AlQaradawi SY, Choi JW, Coskun A (2015) Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano 9:11317–11324

    Article  CAS  PubMed  Google Scholar 

  22. Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW (2014) Hyperbranched beta-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett 14:864–870

    Article  CAS  PubMed  Google Scholar 

  23. Murase M, Yabuuchi N, Han ZJ, Son JY, Cui YT, Oji H, Komaba S (2012) Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. Chem Sus Chem 5:2307–2311

    Article  CAS  Google Scholar 

  24. Drofenik J, Gaberscek M, Dominko R, Poulsen FW, Mogensen M, Pejovnik S, Jamnik J (2003) Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim Acta 48:883–889

    Article  CAS  Google Scholar 

  25. Liu W-R, Yang M-H, Wu H-C, Chiao SM, Wua N-L (2004) Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid State Lett 8:A100–A103

    Article  Google Scholar 

  26. Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y, Zheng H (2018) The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta 269:405–414

    Article  CAS  Google Scholar 

  27. Kim S, Jeong YK, Wang Y, Lee H, Choi JW (2018) A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries. Adv Mater 30:1707594

    Article  Google Scholar 

  28. Bridel JS, Azaïs T, Morcrette M, Tarascon JM, Larcher D (2010) Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries†. Chem Mater 22:1229–1241

    Article  CAS  Google Scholar 

  29. Cao P-F, Yang G, Li B, Zhang Y, Zhao S, Zhang S, Erwin A, Zhang Z, Sokolov AP, Nanda J, Saito T (2019) Rational design of a multifunctional binder for high-capacity silicon-based anodes. ACS Energy Lett 4:1171–1180

    Article  CAS  Google Scholar 

  30. Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C, Liu G, Zhang S (2015) Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185

    Article  CAS  Google Scholar 

  31. Liu J, Zhang Q, Zhang T, Li J-T, Huang L, Sun S-G (2015) A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605

    Article  CAS  Google Scholar 

  32. Jeong YK, Kwon T-W, Lee I, Kim T-S, Coskun A, Choi JW (2015) Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ Sci 8:1224–1230

    Article  CAS  Google Scholar 

  33. Randall RC, Phillips GO, Williams PA (1989) Fraction and characterization of gum from acacia Senegal. Food Hydroeolloids 3:65–75

    Article  CAS  Google Scholar 

  34. Nie S-P, Wang C, Cui SW, Wang Q, Xie M-Y, Phillips GO (2013) A further amendment to the classical core structure of gum arabic (Acacia Senegal). Food Hydrocoll 31:42–48

    Article  CAS  Google Scholar 

  35. Prabaharan M (2011) Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol 49:117–124

    Article  CAS  PubMed  Google Scholar 

  36. Sharma G, Sharma S, Kumar A, Al-Muhtaseb AH, Naushad M, Ghfar AA, Mola GT, Stadler FJ (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohydr Polym 199:534–545

    Article  CAS  PubMed  Google Scholar 

  37. Faria S, de Oliveira Petkowicz CL, de Morais SAL, Terrones MGH, de Resende MM, de França FP, Cardoso VL (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym 86:469–476

    Article  CAS  Google Scholar 

  38. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    Article  CAS  PubMed  Google Scholar 

  39. Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51:8762–8767

    Article  CAS  Google Scholar 

  40. Liu Z, Han S, Xu C, Luo Y, Peng N, Qin C, Zhou M, Wang W, Chen L, Okada S (2016) In situ crosslinked PVA–PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv 6:68371–68378

    Article  CAS  Google Scholar 

  41. Espinosa-Andrews H, Sandoval-Castilla O, Vázquez-Torres H, Vernon-Carter EJ, Lobato-Calleros C (2010) Determination of the gum Arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydr Polym 79:541–546

    Article  CAS  Google Scholar 

  42. Ryou MH, Kim J, Lee I, Kim S, Jeong YK, Hong S, Ryu JH, Kim TS, Park JK, Lee H, Choi JW (2013) Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv Mater 25:1571–1576

    Article  CAS  PubMed  Google Scholar 

  43. Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia VS, Wang L, Yang W (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23:4679–4683

    Article  CAS  PubMed  Google Scholar 

  44. Mizuguchia M, Narab M, Kawanoa K, Nitta K (1997) FT-IR study of the Ca2+−binding to bovine oc-lactalbumin. FEBS Lett 417:153–156

    Google Scholar 

  45. Nara M, Torii H, Tasumi M (1996) Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: an ab initio molecular orbital study. J Phys Chem 100:19812–19817

    Article  CAS  Google Scholar 

  46. Bugaev KO, Zelenina AA, Volodin VA (2012) Vibrational spectroscopy ofchemical species in silicon and silicon-rich nitride thin films. Int J Spectrosc 2012:281851

    Article  Google Scholar 

  47. Chen H, Wu Z, Su Z, Chen S, Yan C, Al-Mamun M, Tang Y, Zhang S (2021) A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81:105654

    Article  CAS  Google Scholar 

  48. Lim S, Lee K, Shin I, Tron A, Mun J, Yim T, Kim T-H (2017) Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes. J Power Sources 360:585–592

    Article  CAS  Google Scholar 

  49. Lim S, Chu H, Lee K, Yim T, Kim YJ, Mun J, Kim TH (2015) Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes. ACS Appl Mater & Interfaces 7:23545–23553

    Article  CAS  Google Scholar 

  50. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394

    Article  CAS  Google Scholar 

  51. Hwang C, Joo S, Kang NR, Lee U, Kim TH, Jeon Y, Kim J, Kim YJ, Kim JY, Kwak SK, Song HK (2015) Breathing silicon anodes for durable high-power operations. Sci Rep 5:14433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwon TW, Jeong YK, Lee I, Kim TS, Choi JW, Coskun A (2014) Systematic molecular-level design of binders incorporating Meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv Mater 26:7979–7985

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Sichuan Science and Technology Planning Project (No. 2019YFH0149), the National Natural Science Foundation of China (Grant Nos. 21878195 and 21805198), the Distinguished Young Foundation of Sichuan Province (20JCQN0197), the Sichuan University Luzhou Municipal People’s Government Strategic Cooperation Project (2019CDLZ-06), the China National Postdoctoral Program for Innovative Talents (BX20200222), and the China Postdoctoral Science Foundation (Grant No. 2020 M682878). The authors thank Dr. Yao Xiao at Shenzhen University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Guo Wu or Xiao-Dong Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, ZG., Liu, YM. et al. A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. Ionics 27, 1829–1836 (2021). https://doi.org/10.1007/s11581-021-03944-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03944-y

Keywords

Navigation