Skip to main content
Log in

Phase-controlled synthesis of Co-Mg hydroxide for high-performance hybrid supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two-dimensional Mg-substituted cobalt hydroxides (CoxMgy(OH)z) with different crystal phases were synthesized via a facile reaction of magnesium (Mg) powder and cobalt aqueous solution. The phases of CoxMgy(OH)z (amorphous phase and β phase) were controlled by adjusting the cobalt salt precursors. The obtained hybrid amorphous CoxMgy(OH)z (a-CoxMgy(OH)z) showed excellent specific capacitance (662.2 F g−1, 1 A g−1) than β phase CoxMgy(OH)z (β-CoxMgy(OH)z) and pure Co(OH)2 (p-Co(OH)2). Additionally, the hybrid supercapacitor assembled with a-CoxMgy(OH)z and the activated carbon showed high specific capacitance (77.8 F g−1, 1 A g−1) and ultrahigh cycling stability with 99.7% retention of the first capacitance at 10 A g−1 after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445. https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  2. Bao J, Wang Z, Xie J, Xu L, Lei F, Guan M, Zhao Y, Huang Y, Li H (2019) A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun 55(24):3521–3524. https://doi.org/10.1039/c9cc00269c

    Article  CAS  Google Scholar 

  3. Xiao Y, Su D, Wang X, Wu S, Zhou L, Sun Z, Wang Z, Fang S, Li F (2017) Ultrahigh energy density and stable supercapacitor with 2D NiCoAl layered double hydroxide. Electrochim Acta 253:324–332. https://doi.org/10.1016/j.electacta.2017.09.033

    Article  CAS  Google Scholar 

  4. Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111. https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  5. Zhang K, Wang W, Kuai L, Geng B (2017) A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochim Acta 225:303–309. https://doi.org/10.1016/j.electacta.2016.12.131

    Article  CAS  Google Scholar 

  6. Liu Y, Teng X, Mi Y, Chen Z (2017) A new architecture design of Ni–Co LDH-based pseudocapacitors. J Mater Chem A 5(46):24407–24415. https://doi.org/10.1039/c7ta07795e

    Article  CAS  Google Scholar 

  7. Rey-Raap N, Enterrí M, Martins JI, Pereira MFR, Figueiredo JL (2019) Influence of multiwalled carbon nanotubes as additives in biomassderived carbons for supercapacitor applications. ACS Appl Mater Inter 11:6066–6077. https://doi.org/10.1021/acsami.8b19246

    Article  CAS  Google Scholar 

  8. Zhou G, Yin J, Sun Z, Gao X, Zhu F, Zhao P, Li R, Xu J (2020) An ultrasonic-assisted synthesis of rice-straw-based porous carbon with high performance symmetric supercapacitors. RSC Adv 10(6):3246–3255. https://doi.org/10.1039/c9ra08537h

    Article  CAS  Google Scholar 

  9. Miao R, Tao B, Miao F, Zang Y, Shi C, Zhu L, Chu PK (2019) Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode. Ionics 25:1783–1792. https://doi.org/10.1007/s11581-019-02888-8

    Article  CAS  Google Scholar 

  10. Kumar R, Rai P, Sharm A (2016) Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv 6:3815–3822. https://doi.org/10.1039/C5RA20331G

    Article  CAS  Google Scholar 

  11. Zhang R, An H, Li Z, Shao M, Han J, Wei M (2016) Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors. Chem Eng J 289:85–92. https://doi.org/10.1016/j.cej.2015.12.088

    Article  CAS  Google Scholar 

  12. Wang K, Zhang X, Sun X, Ma Y (2016) Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci China Mater 59:412–420. https://doi.org/10.1007/s40843-016-5062-3

    Article  CAS  Google Scholar 

  13. Shen W, Zang J, Hu H, Xu J, Zhang Z, Yan R, Dai S (2020) Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage. Mater Des 195:108992. https://doi.org/10.1016/j.matdes.2020.108992

    Article  CAS  Google Scholar 

  14. Dai S, Zhao B, Qu C, Chen D, Dang D, Song B, deGlee BM, Fu J, Hu C, Wong C-P, Liu M (2017) Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 33:522–531. https://doi.org/10.1016/j.nanoen.2017.01.056

    Article  CAS  Google Scholar 

  15. Dai S, Zhang Z, Xu J, Shen W, Zhang Q, Yang X, Xu T, Dang D, Hu H, Zhao B, Wang Y, Qu C, Fu J, Li X, Hu C, Liu M (2019) In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy 64:103919. https://doi.org/10.1016/j.nanoen.2019.103919

    Article  CAS  Google Scholar 

  16. Cao L, Xu F, Liang Y-Y, Li H-L (2004) Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv Mater 16(20):1853–1857. https://doi.org/10.1002/adma.200400183

    Article  CAS  Google Scholar 

  17. Gong L, Su L (2011) Facile synthesis and capacitive performance of the Co(OH)2 nanostructure via a ball-milling method. Appl Surf Sci 257(23):10201–10205. https://doi.org/10.1016/j.apsusc.2011.07.019

    Article  CAS  Google Scholar 

  18. Aghazadeh M, Dalvand S, Hosseinifard M (2014) Facile electrochemical synthesis of uniform β-Co(OH)2 nanoplates for high performance supercapacitors. Ceram Int 40(2):3485–3493. https://doi.org/10.1016/j.ceramint.2013.09.081

    Article  CAS  Google Scholar 

  19. Warsi MF, Shakir I, Shahid M, Sarfraz M, Nadeem M, Gilani ZA (2014) Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochim Acta 135:513–518. https://doi.org/10.1016/j.electacta.2014.05.020

    Article  CAS  Google Scholar 

  20. Niu H, Zhang Y, Liu Y, Xin N, Shi W (2019) NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors. J Colloid Interface Sci 539:545–552. https://doi.org/10.1016/j.jcis.2018.12.095

    Article  CAS  PubMed  Google Scholar 

  21. Xing C, Musharavati F, Li H, Zalezhad E, Hui OKS, Bae S, Cho B-Y (2017) Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures. RSC Adv 7(62):38945–38950. https://doi.org/10.1039/c7ra06670h

    Article  CAS  Google Scholar 

  22. Xie L-j, G-h S, Xie L-f, F-y S, X-m L, Liu Z, Kong Q-q, Lu C-x, K-x L, C-m C (2016) A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon. New Carbon Materials 31(1):37–45. https://doi.org/10.1016/s1872-5805(16)60003-3

    Article  CAS  Google Scholar 

  23. Li W, Chen Y, Li F, Zheng W, Yin J, Chen X, Chen L (2019) Preparation of amorphous detrital Ni (OH)2-reduced graphene oxide composite as electrode material for supercapacitor. Ionics 25:2401–2409. https://doi.org/10.1007/s11581-018-2677-1

    Article  CAS  Google Scholar 

  24. Sun W, Rui X, Ulaganathan M, Madhavi S, Yan Q (2015) Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J Power Sources 295:323–328. https://doi.org/10.1016/j.jpowsour.2015.07.024

    Article  CAS  Google Scholar 

  25. Xue T, Wang X, Lee J-M (2012) Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J Power Sources 201:382–386. https://doi.org/10.1016/j.jpowsour.2011.10.138

    Article  CAS  Google Scholar 

  26. Zhu Y, Huang C, Li C, Fan M, Shu K, Chen HC (2019) Strong synergetic electrochemistry between transition metals of α phase Ni−Co−Mn hydroxide contributed superior performance for hybrid supercapacitors. J Power Sources 412:559–567. https://doi.org/10.1016/j.jpowsour.2018.11.080

    Article  CAS  Google Scholar 

  27. Mehrabad JT, Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2016) α-Co(OH)2 nanoplates with excellent supercapacitive performance: electrochemical preparation and characterization. Mater Lett 184:223–226. https://doi.org/10.1016/j.matlet.2016.08.069

    Article  CAS  Google Scholar 

  28. Yin J, Zhou G, Gao X, Chen J, Zhang L, Xu J, Zhao P, Gao F (2019) Alpha- and beta-phase Ni-Mg hydroxide for high performance hybrid supercapacitors. Nanomaterials (Basel) 9(12). https://doi.org/10.3390/nano9121686

  29. Xie M, Duan S, Shen Y, Fang K, Wang Y, Lin M, Guo X (2016) In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett 1(4):814–819. https://doi.org/10.1021/acsenergylett.6b00258

    Article  CAS  Google Scholar 

  30. Guoxiang P, Xinhui X, Jingshan L, Feng C, Zhihong Y, Hongjin F (2014) Preparation of CoAl layered double hydroxide nanoflake arrays and their high supercapacitance performance. Appl Clay Sci 102:28–32. https://doi.org/10.1016/j.clay.2014.10.003

    Article  CAS  Google Scholar 

  31. Zhang JT, Liu S, Pan GL, Li GR, Gao XP (2014) A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J Mater Chem A 2(5):1524–1529. https://doi.org/10.1039/c3ta13578k

    Article  CAS  Google Scholar 

  32. Choi J, Oh T, Kim M, Yang J, Kim J (2019) Optimal Co(OH)2 nanowire contents in graphene nanosheet electrode on its electrochemical performance of supercapacitor. J Nanosci Nanotechnol 19:1350–1359. https://doi.org/10.1166/jnn.2019.16195

    Article  CAS  PubMed  Google Scholar 

  33. Shang Y, Ma S, Wei Y, Yang H, Xu Z (2020) Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor. Ionics 26:3609–3619. https://doi.org/10.1007/s11581-020-03496-7

    Article  CAS  Google Scholar 

  34. Aghazadeh M, Shiri HM, Barmi A-AM (2013) Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl Surf Sci 273:237–242. https://doi.org/10.1016/j.apsusc.2013.02.021

    Article  CAS  Google Scholar 

  35. Liu X, Qu B, Zhu F, Gong L, Su L, Zhu L (2013) Sonochemical synthesis of β-Co(OH)2 hexagonal nanoplates and their electrochemical capacitive behaviors. J Alloys Compd 560:15–19. https://doi.org/10.1016/j.jallcom.2013.01.050

    Article  CAS  Google Scholar 

  36. Yu D, Wang Y, Zhang L, Low Z-X, Zhang X, Chen F, Feng Y, Wang H (2014) Three-dimensional branched single-crystal β-Co(OH)2 nanowire array and its application for supercapacitor with excellent electrochemical property. Nano Energy 10:153–162. https://doi.org/10.1016/j.nanoen.2014.09.010

    Article  CAS  Google Scholar 

  37. Wang Z, Liu Y, Gao C, Jiang H, Zhang J (2015) A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J Mater Chem A 3(41):20658–20663. https://doi.org/10.1039/c5ta04663g

    Article  CAS  Google Scholar 

  38. Liao J, Wang X, Wang Y, Su S, Nairan A, Kangab F, Yang C (2018) Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors. RSC Adv 8:17263–17271. https://doi.org/10.1039/C8RA02844C

    Article  CAS  Google Scholar 

  39. Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Fabrication of porous beta-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29(29):9179–9187. https://doi.org/10.1021/la401752n

    Article  CAS  PubMed  Google Scholar 

  40. Gao S, Sun Y, Lei F, Liang L, Liu J, Bi W, Pan B, Xie Y (2014) Ultrahigh energy density realized by a single-layer b-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Edit 126:13003–13007. https://doi.org/10.1002/anie.201407836

    Article  CAS  Google Scholar 

  41. Kuo CL, Hwang KC (2012) Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism. Langmuir 28(8):3722–3729. https://doi.org/10.1021/la204002b

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Xia X, Kang J, Tu J (2012) Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application. Chin Sci Bull 57(32):4215–4219. https://doi.org/10.1007/s11434-012-5291-z

    Article  CAS  Google Scholar 

  43. Giovannelli F, Delorme F, Autret-Lambert C, Seron A, Jean-Prost V (2012) Existence of a solid solution from brucite to β-Co(OH)2. Mater Res Bull 47(5):1212–1216. https://doi.org/10.1016/j.materresbull.2012.01.033

    Article  CAS  Google Scholar 

  44. Jing C, Liu X, Yao H, Yan P, Zhao G, Bai X, Dong B, Dong F, Li S, Zhang Y (2019) Phase and morphology evolution of CoAl LDH nanosheets towards advanced supercapacitor application. Crystengcomm 21:4934–4942. https://doi.org/10.1039/C9CE00905A

    Article  CAS  Google Scholar 

  45. Sanati S, Rezvani Z (2019) g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors. Chem Eng J 362:743–757. https://doi.org/10.1016/j.cej.2019.01.081

    Article  CAS  Google Scholar 

  46. Chen HC, Qin Y, Cao H, Song X, Huang C, Feng H, Zhao XS (2019) Synthesis of amorphous nickel–cobalt–manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater 17:194–203. https://doi.org/10.1016/j.ensm.2018.07.018

    Article  Google Scholar 

  47. Zhou L, Shao M, Li J, Jiang S, Wei M, Duan X (2017) Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting. Nano Energy 41:583–590. https://doi.org/10.1016/j.nanoen.2017.10.009

    Article  CAS  Google Scholar 

  48. Liu F, Chen Y, Liu Y, Bao J, Han M, Dai Z (2019) Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale 11(20):9896–9905. https://doi.org/10.1039/c9nr02357g

    Article  CAS  PubMed  Google Scholar 

  49. Wang F, Sun S, Xu Y, Wang T, Yu R, Li H (2017) High performance asymmetric supercapacitor based on cobalt nickle iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci Rep-UK 7(1):4707. https://doi.org/10.1038/s41598-017-04807-1

    Article  CAS  Google Scholar 

  50. Kong K, Hyun J, Kim Y, Kim W, Kim D (2019) Nanoporous structure synthesized by selective phase dissolution of AlCoCr FeNi high entropy alloy and its electrochemical properties as supercapacitor electrode. J Power Sources 437:226927. https://doi.org/10.1016/j.jpowsour.2019.226927

    Article  CAS  Google Scholar 

  51. Darbandi M, Shaabani B, Alizadeh A, Yardani P, Shahryari E, Hosseini MG (2019) Preparation and characterization of hexagonal mesoporous β-Co(OH)2 nanorings. Microporous Mesoporous Mater 284:421–426. https://doi.org/10.1016/j.micromeso.2019.04.048

    Article  CAS  Google Scholar 

  52. Wang W, Feng K, Wang Z, Ma Y, Zhang S, Liang Y (2011) Controllable synthesis and growth mechanism of α-Co(OH)2 nanorods and nanoplates by a facile solution-phase route. J Solid State Chem 184(12):3299–3302. https://doi.org/10.1016/j.jssc.2011.10.027

    Article  CAS  Google Scholar 

  53. Yang W, Feng Y, Wang N, Yuan H, Xiao D (2015) Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application: effect of the cobalt precursors. J Alloys Compd 644:836–845. https://doi.org/10.1016/j.jallcom.2015.05.055

    Article  CAS  Google Scholar 

  54. Jagadale AD, Guan G, Li X, Du X, Ma X, Hao X, Abudula A (2016) Ultrathin nanoflakes of cobalt‑manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J Power Sources 306:526–534. https://doi.org/10.1016/j.jpowsour.2015.12.097

    Article  CAS  Google Scholar 

  55. Yu L, Shi N, Liu Q, Wang J, Yang B, Wang B, Yan H, Sun Y, Jing X (2014) Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes. Phys Chem Chem Phys 16(33):17936–17942. https://doi.org/10.1039/c4cp02020k

    Article  CAS  PubMed  Google Scholar 

  56. Kiran SK, Padmini M, Das HT, Elumalai P (2016) Performance of asymmetric supercapacitor using CoCr-layered double hydroxide and reduced graphene-oxide. J Solid State Electrochem 21(4):927–938. https://doi.org/10.1007/s10008-016-3436-8

    Article  CAS  Google Scholar 

  57. Li J, Zhang P, Zhao X, Chen L, Shen J, Li M, Ji B, Song L, Wu Y, Liu D (2019) Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. J Colloid Interface Sci 549:236–245. https://doi.org/10.1016/j.jcis.2019.04.062

    Article  CAS  PubMed  Google Scholar 

  58. Wang R, Yan X, Lang J, Zheng Z, Zhang P (2014) A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J Mater Chem A 2(32):12724–12732. https://doi.org/10.1039/c4ta01296h

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51872109 and 21201072), China Postdoctoral Science Foundation (grant no. 2013 T60517), the Natural Science Foundation of Jiangsu Province (grant no. BK2012241), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant no. 18KJA150002), Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (grant no. JSKC180011), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (201910323025Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingzhou Yin, Guolang Zhou or Lili Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Rui, J., Yin, J. et al. Phase-controlled synthesis of Co-Mg hydroxide for high-performance hybrid supercapacitors. Ionics 27, 351–360 (2021). https://doi.org/10.1007/s11581-020-03805-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03805-0

Keywords

Navigation