Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO-NaCF3SO3-MIL-53(Al) solid electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A flexible PEO-NaCF3SO3-MIL-53(Al) solid electrolyte is fabricated for all-solid-state sodium-sulfur batteries (ASSBs). When the mole ratio of EO (ethylene oxide of PEO):Na (sodium ion of NaCF3SO3) is 20 and MIL-53(Al) is 3.24 wt%, high ionic conductivities of 6.87 × 10−5 S cm−1 at 60 °C and 6.52 × 10−4 S cm−1 at 100 °C are achieved. And the sodium ion transference number is significantly increased to 0.40 from 0.13 compared to the PEO-NaCF3SO3 solid electrolyte without MIL-53(Al). When it is assembled to ASSBs, the batteries obtain high capacity retention and reversible current-rate capability. At 0.1 C and 60 °C, the solid-state battery delivers the first discharge capacity of 897.7 mAh g−1 and 674.9 mAh g−1 after 50 cycles with a coulombic efficiency near 100%. The enhanced electrochemical performances of the solid electrolyte, as well as ASSBs, are benefited from MIL-53(Al) filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang W, Zhang F, Ming F, Alshareef HN (2019) Sodium-ion battery anodes: status and future trends. EnergyChem 1(2):1–43

    Google Scholar 

  2. Yang J, Zhang H, Zhou Q, Qu H, Dong T, Zhang M, Tang B, Zhang J, Cui G (2019) Safety-enhanced polymer electrolytes for sodium batteries: recent progress and perspectives. ACS Appl Mater Interfaces 11(19):17109–17127

    CAS  PubMed  Google Scholar 

  3. Huo X, Liu Y, Li R, Li J (2019) Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries. Ionics 25(11):5373–5382

    CAS  Google Scholar 

  4. Kumar D, Rajouria SK, Kuhar SB, Kanchan DK (2017) Progress and prospects of sodium-sulfur batteries: a review. Solid State Ionics 312:8–16

    CAS  Google Scholar 

  5. Hueso KB, Palomares V, Armand M, Rojo T (2017) Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res 10:4082–4114

    CAS  Google Scholar 

  6. Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer LA (2016) A stable room-temperature sodium-sulfur battery. Nat Commun 7:1–10

    Google Scholar 

  7. Wang YX, Yang J, Lai W, Chou SL, Gu QF, Liu HK, Zhao D, Dou SX (2016) Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J Am Chem Soc 138(51):16576–16579

    CAS  PubMed  Google Scholar 

  8. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Yang J, Nuli Y, Holze R (2007) Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem Commun 9(1):31–34

    CAS  Google Scholar 

  10. Yue J, Han F, Fan X, Zhu X, Ma Z, Yang J, Wang C (2017) High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 11(5):4885–4891

    CAS  PubMed  Google Scholar 

  11. Lu H, Zhu Y, Zheng B, Du H, Zheng X, Liu C, Yuan Y, Fang J, Zhang K (2020) A hybrid ionic liquid-based electrolyte for high-performance lithium-sulfur batteries. New J Chem 44(2):361–368

    CAS  Google Scholar 

  12. Lu H, Chen Z, Yuan Y, Du H, Wang J, Liu X, Hou Z, Zhang K, Fang J, Qu Y (2019) A rational balance design of hybrid electrolyte based on ionic liquid and fluorinated ether in lithium sulfur batteries. J Electrochem Soc 166(12):A2453–A2458

    CAS  Google Scholar 

  13. Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185–190

    Google Scholar 

  14. Kim J-S, Ahn H-J, Kim I-P, Kim K-W, Ahn J-H, Park C-W, Ryu H-S (2008) The short-term cycling properties of Na/PVdF/S battery at ambient temperature. J Solid State Electrochem 12(7–8):861–865

    CAS  Google Scholar 

  15. Zheng Y, Pan Q, Clites M, Byles BW, Pomerantseva E, Li CY (2018) High-capacity all-solid-state sodium metal battery with hybrid polymer electrolytes. Adv Energy Mater 8(27):1801885

    Google Scholar 

  16. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly (vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ionics 202(1):45–53

    CAS  Google Scholar 

  17. Di Lecce D, Minnetti L, Polidoro D, Marangon V, Hassoun J (2019) Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries. Ionics 25(7):3129–3141

    Google Scholar 

  18. Chen S, Feng F, Yin Y, Che H, Liao X-Z, Ma Z-F (2018) A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries. J Power Sources 399:363–371

    CAS  Google Scholar 

  19. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8(11):1702657

    Google Scholar 

  20. Su NC, Noor SAM, Roslee MF, Mohamed NS, Ahmad A, Yahya MZA (2018) Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application. Ionics 25(2):541–549

    Google Scholar 

  21. Serra Moreno J, Armand M, Berman MB, Greenbaum SG, Scrosati B, Panero S (2014) Composite PEOn:NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J Power Sources 248:695–702

    CAS  Google Scholar 

  22. Bhide A, Hariharan K (2008) Composite polymer electrolyte based on (PEO)6:NaPO3 dispersed with BaTiO3. Polym Int 57(3):523–529

    CAS  Google Scholar 

  23. Mohapatra SR, Thakur AK, Choudhary RNP (2007) Studies on PEO-based sodium ion conducting composite polymer films. Ionics 14(3):255–262

    Google Scholar 

  24. Lin Z, Liu J (2019) Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte. RSC Adv 9(59):34601–34606

    CAS  Google Scholar 

  25. Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y-S, Zhou Z, Li H, Huang X, Chen L (2016) A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 4(41):15823–15828

    CAS  Google Scholar 

  26. Pradhan DK, Samantaray BK, Choudhary RNP, Karan NK, Thomas R, Katiyar RS (2010) Effect of plasticizer on structural and electrical properties of nanocomposite solid polymer electrolytes. Ionics 17(2):127–134

    Google Scholar 

  27. Xu X, Li Y, Cheng J, Hou G, Nie X, Ai Q, Dai L, Feng J, Ci L (2020) Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J Energy Chem 41:73–78

    Google Scholar 

  28. Yu X, Xue L, Goodenough JB, Manthiram A (2019) A high-performance all-solid-state sodium battery with a poly (ethylene oxide)-Na3Zr2Si2PO12 composite electrolyte. ACS Mater Lett 1(1):132–138

    CAS  Google Scholar 

  29. Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J (2007) Discharge properties of all-solid sodium-sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165(1):450–454

    CAS  Google Scholar 

  30. Zhu T, Dong X, Liu Y, Wang Y-G, Wang C, Xia Y-Y (2019) An all-solid-state sodium-sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode. ACS Appl Energy Mater 2(7):5263–5271

    CAS  Google Scholar 

  31. Park SS, Tulchinsky Y, Dinca M (2017) Single-ion Li(+), Na(+), and Mg(2+) solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework. J Am Chem Soc 139(38):13260–13263

    CAS  PubMed  Google Scholar 

  32. Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Metal organic framework laden poly (ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364

    CAS  Google Scholar 

  33. Zhu K, Liu Y, Liu J (2014) A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv 4(80):42278–42284

    CAS  Google Scholar 

  34. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 10(6):1373–1382

    CAS  PubMed  Google Scholar 

  35. Wiers BM, Foo ML, Balsara NP, Long JR (2011) A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J Am Chem Soc 133(37):14522–14525

    CAS  PubMed  Google Scholar 

  36. Dhakshinamoorthy A, Alvaro M, Chevreau H, Horcajada P, Devic T, Serre C, Garcia H (2012) Iron (iii) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal Sci Technol 2(2):324–330

    CAS  Google Scholar 

  37. Wu J-F, Guo X (2019) MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J Mater Chem A 7(6):2653–2659

    CAS  Google Scholar 

  38. Yuan C, Li J, Han P, Lai Y, Zhang Z, Liu J (2013) Enhanced electrochemical performance of poly (ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J Power Sources 240:653–658

    CAS  Google Scholar 

  39. Zhang C, Lin Y, Liu J (2015) Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries. J Mater Chem A 3(20):10760–10766

    CAS  Google Scholar 

  40. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34(1):18–26

    Google Scholar 

  41. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    CAS  Google Scholar 

  42. Ni'mah YL, Cheng M-Y, Cheng JH, Rick J, Hwang B-J (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381

    CAS  Google Scholar 

  43. Hashmi SA, Thakur AK, Upadhyaya HM (1998) Experimental studies on polyethylene oxide-NaClO4 based composite polymer electrolytes dispersed with Na2SiO3. Eur Polym J 34(9):1277–1282

    CAS  Google Scholar 

  44. Chen R, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G, Ye Y, Amine K (2013) Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett 13(10):4642–4649

    CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Science Foundation of China (No. 51274239), the Chinese Academy of Engineering (No. 2016-XY-18), grants from the Project of Innovation-driven Plan in Central South University, and the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Li, J. & Liu, J. Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO-NaCF3SO3-MIL-53(Al) solid electrolyte. Ionics 26, 1787–1795 (2020). https://doi.org/10.1007/s11581-020-03513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03513-9

Keywords

Navigation