Skip to main content

Advertisement

Log in

Low-cost high-performance asymmetric supercapacitors based on ribbon-like Ni(OH)2 and biomass carbon nanofibers enriched with nitrogen and phosphorus

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we report a facile and low-cost synthesis of nitrogen and phosphorus co-doped carbonized bacterial cellulose (N, P-CBC) via in-situ soaking bacteria cellulose and carbonization method. The N, P-CBC yielded a high specific capacitance of 232 F g−1 at 1 A g−1 and 92.7% rate capability retention at 5 A g−1. Moreover, the asymmetric supercapacitor (ASC) device was further fabricated with N, P-CBC as the negative electrode and Ni(OH)2, prepared using a simple chemical precipitate method as the positive electrode. The fabricated ASC device provided a maximum working voltage of 1.6 V and high energy density (41.9 Wh kg−1 at a power density of 799.2 W kg−1). The device exhibits remarkable specific capacitance (118 F g−1 at 1 A g−1) and excellent cycle lifetime (76.3% specific capacitance after 5000 cycles). Such an excellent electrochemical performance demonstrated that the as-prepared N, P-CBC and Ni(OH)2 electrodes will be both great potential candidates for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    Article  CAS  PubMed  Google Scholar 

  2. Winter M, Ralph J, Brodd (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  4. Chen HC, Jiang JJ, Zhang L, Zhao YD, Guo DQ, Ruan YJ, Xia DD (2015) One-pot fabrication of layered α-phase nickel- cobalt hydroxides as advanced electrode materials for pseudocapacitors. ChemPlusChem 80:181–182

    Article  CAS  Google Scholar 

  5. Jeffrey WL, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors ––stretching the limits of aqueous electrolytes. MRS Bull 36:513–522

    Article  CAS  Google Scholar 

  6. Wang J, Chang J, Wang L, Hao J (2018) One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24:3967–3973

    Article  CAS  Google Scholar 

  7. Nicolas GB, Crosnier O, Buvat G, Favier F, Brousse T (2016) Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J Power Sources 326:695–701

    Article  CAS  Google Scholar 

  8. Zhao P, Yao MQ, Ren HB, Wang N, Komarneni S (2019) Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl Surf Sci 463:931–938

    Article  CAS  Google Scholar 

  9. Wang XZ, Su DC, Xiao YH, Xu SG, Fang SM, Cao SK (2019) Ultra-dispersed island-like Co9S8 nanoparticles composed of nanosheets in-situ grown on nitrogen-doped graphene for asymmetric supercapacitor. Electrochim Acta 293:419–425

    Article  CAS  Google Scholar 

  10. Wei M, Wang C, Yao YB, Yu SH, Liao WH, Ren JW, Sun R, Wong CP (2019) Toward high-performance all-solid-state supercapacitors using facilely fabricated graphite nanosheet-supported CoMoS4 as electrode material. Chem Eng J 355:891–900

    Article  CAS  Google Scholar 

  11. Wang HP, Ma GF, Tong YC, Yang ZR (2018) Biomass carbon/polyaniline composite and WO3 nanowire-based asymmetric supercapacitor with superior performance. Ionics 24:3123–3131

    Article  CAS  Google Scholar 

  12. He XY, Zhao YH, Chen RR, Zhang HS, Liu JY, Liu Q, Song DL, Li RM, Wang J (2018) Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. ACS Sustain Chem Eng 6:14945–14954

    Article  CAS  Google Scholar 

  13. Zhao YH, He XY, Chen RR, Liu Q, Liu JY, Song DL, Zhang HS, Dong HX, Li RM, Zhang ML, Wang J (2018) Hierarchical NiCo2S4@CoMoO4 core/shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl Surf Sci 453:73–82

    Article  CAS  Google Scholar 

  14. Zhao YH, He XY, Chen RR, Liu Q, Liu JY, Yu J, Li JQ, Zhang HS, Dong HX, Zhang ML, Wang J (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem Eng J 352:29–38

    Article  CAS  Google Scholar 

  15. Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14:1533–1539

    Article  CAS  Google Scholar 

  16. Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736

    Article  CAS  PubMed  Google Scholar 

  17. Aguilera L, Leyet Y, Garcia RP, Hernández EP, Passos RR, Pocrifka LA (2017) Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem Phys Lett 677:75–79

    Article  CAS  Google Scholar 

  18. Li HL, Liu SQ, Huang CH, Zhou Z, Li YH, Fang D (2011) Characterization and supercapacitor application of coin-like β-nickel hydroxide nanoplates. Electrochim Acta 58:89–94

    Article  CAS  Google Scholar 

  19. Pichamon S, Pawin I, Atiweena K, Tanut P, Peerapan D, Pinit K (2017) Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene: redox additive and charge storage mechanism. Sustain Energ Fuels 1:275–279

    Article  Google Scholar 

  20. Vijaykumar S, Muralidharan G (2014) Electrochemical supercapacitor behavior of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. J Electroanal Chem 727:53–58

    Article  CAS  Google Scholar 

  21. Lokhande PE, Chavan US (2018) Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater Lett 218:225–228

    Article  CAS  Google Scholar 

  22. Khan Y, Hussain S, Söderlind F, Käll PO, Abbasi MA, Durrani SK (2012) Honeycomb β-Ni(OH)2 films grown on 3D nickel foam substrates at low temperature. Mater Lett 69:37–40

    Article  CAS  Google Scholar 

  23. Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161

    Article  CAS  Google Scholar 

  24. Tian X, Cheng C, Qian L, Zheng B, Yuan H, Xie S, Xiao D, Choi MMF (2012) Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J Mater Chem 22:8029

    Article  CAS  Google Scholar 

  25. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 12647:1–5

    Google Scholar 

  26. Liu TY, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5:17705–17733

    Article  CAS  Google Scholar 

  27. Inal IIG, Holmes SM, Banford A, Aktas Z (2015) The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci 357:696–703

    Article  CAS  Google Scholar 

  28. Thubsuang U, Laebang S, Manmuanpom N, Wongkasemjit S, Chaisuwan T (2017) Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. J Mater Sci 52:6837–6855

    Article  CAS  Google Scholar 

  29. Lei W, Han LL, Xuan CJ, Lin RQ, Liu HF, Xin HL, Wang D (2016) Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim Acta 210:130–137

    Article  CAS  Google Scholar 

  30. Chen H, Liu D, Shen ZH, Bao BF, Zhao SY, Wu LM (2015) Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim Acta 180:241–225

    Article  CAS  Google Scholar 

  31. Zhang WL, Xu JH, Hou DX, Yin J, Liu DB, He YP, Lin HB (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338–344

    Article  CAS  PubMed  Google Scholar 

  32. Sherstha S, Mustain WE (2010) Properties of nitrogen-functionalized ordered mesoporous carbon prepared using polypyrrole precursor. J Electrochem Soc 157:B1665–B1672

    Article  CAS  Google Scholar 

  33. Chen LF, Zhang XD, Liang HW, Kong MG, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102

    Article  CAS  PubMed  Google Scholar 

  34. Hu ZX, Li SS, Chen PP, Yu WD, Li RC, Shao XF, Lin WR, Yuan DS (2016) N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J Mater Sci 5:2627–2633

    Article  CAS  Google Scholar 

  35. Wang B, Li XL, Luo B, Yang JX, Wang XJ, Song Q, Chen SY, Zhi LJ (2013) Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:2399–2404

    Article  CAS  PubMed  Google Scholar 

  36. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111

    Article  CAS  Google Scholar 

  37. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  38. Chen XA, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:556–557

    Google Scholar 

  39. Lee JW, Ahn T, Soundararajan D, Koc JM, Kim JD (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47:6305–6307

    Article  CAS  Google Scholar 

  40. Yang YF, Cheng D, Chen SJ, Guan YL, Xiong J (2018) Construction of hierarchical NiCo2S4@Ni(OH)2 core-shell hybrid nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors. Electrochim Acta 193:116–127

    Article  CAS  Google Scholar 

  41. Ede SR, Anantharaj S, Kumaran KT, Mishra S, Kundu S (2017) One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors. RSC Adv 7:5898–5911

    Article  CAS  Google Scholar 

  42. Li XM, Qiao YQ, Wang CH, Shen TD, Zhang XY, Wang HC, Li YS, Gao WM (2019) MOF-derived Co/C nanocomposites encapsulated by Ni(OH)2 ultrathin nanosheets shell for high performance supercapacitors. J Alloys Compd 770:803–812

    Article  CAS  Google Scholar 

  43. Wang DW, Guan B, Li Y, Li DD, Xu ZY, Hu YF, Wang YQ, Zhang HH (2018) Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors. J Alloys Compd 737:238–247

    Article  CAS  Google Scholar 

  44. Wang PY, Li YN, Li SD, Liao XQ, Sun SM (2017) Water-promoted zeolitic framework-67 transformation to Ni-Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J Mater Sci Mater Electron 28:9221–9227

    Article  CAS  Google Scholar 

  45. Li M, Yang HX, Wang YH, Wang LW, Chu PK (2018) Core-shell CoMoO4@Ni(OH)2 on ordered macro-porous electrode plate for high-performance supercapacitor. Electrochim Acta 283:538–547

    Article  CAS  Google Scholar 

  46. Bai X, Liu Q, Liu JY, Zhang HS, Li ZS, Jing XY, Liu PL, Wang J, Li RM (2017) Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem Eng J 315:35–45

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Guangdong Science and Technology Project Fund (no. 2015A030310488) and the Scientific Cultivation and Innovation Fund Project of Jinan University (Nos. 21617427 and 21617422).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhidan Lin or Peng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Cao, L., Fang, Z. et al. Low-cost high-performance asymmetric supercapacitors based on ribbon-like Ni(OH)2 and biomass carbon nanofibers enriched with nitrogen and phosphorus. Ionics 25, 4341–4350 (2019). https://doi.org/10.1007/s11581-019-02980-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02980-z

Keywords

Navigation