Skip to main content
Log in

A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL copolymer (TAPEC) was synthesized by the “click” coupling of methoxypolyethylene glycol azide and α-propargyl-ω-hydroxyl-poly(ε-caprolactone), followed by the quaternization of the 1,2,3-triazole moiety with iodomethane. All the intermediates and TAPEC were characterized by 1H NMR, FT-IR, and gel permeation chromatography (GPC). Taking advantage of the characteristics of ionic liquid and block copolymer, this ion-containing diblock copolymer is expected to be used as a novel compatibilizer in mixed biopolyester for regulating the interface and crystallization behaviors. Hence, the TAPEC was evaluated as a compatibilizer and an interface emulsifier in the blends of polylactic acid (PLA) and poly(ε-caprolactone) (PCL). Non-isothermal crystallization experimental results showed that the TAPEC with the higher amount of ε-caprolactone units induces a plasticization and nucleate effect that increased the crystallization ability of the PLA phase; meanwhile, in the PCL phase, the agminated ionic cluster acting as a nucleating agent significantly increased the crystalline of PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8

    Article  Google Scholar 

  2. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  3. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  4. Pivsa-Art W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H (2016) The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate). J Appl Polym Sci 133. doi:10.1002/APP.43044

  5. Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9

    Article  CAS  Google Scholar 

  6. Liu J, Chen P, Li J, Jiang SH, Jiang ZQ, Gu Q (2011) Synthesis of poly(ethylene adipate-co-l-lactic acid) copolymers via ring opening polymerization. Polym Bull 66:187–197

    Article  CAS  Google Scholar 

  7. Lai SM, Liu YH, Huang CT, Don TM (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res 24:102

    Article  Google Scholar 

  8. Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Balart R, Cabedo L, Gamez-Perez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134: doi: 10.1002/app.44806

  9. Finotti PFM, Costa LC, Chinelatto MA (2016) Effect of the chemical structure of compatibilizers on the thermal, mechanical and morphological properties of immiscible PLA/PCL blends. Macromol Symp 368:24–29

    Article  CAS  Google Scholar 

  10. Zhang C, Zhai T, Turng TS, Dan Y (2015) Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54:9505–9511

    Article  CAS  Google Scholar 

  11. Forouharshad M, Gardella L, Furfaro D, Galimberti M, Monticelli O (2015) A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite. Eur Polym J 70:28–36

    Article  CAS  Google Scholar 

  12. Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548

    Article  CAS  Google Scholar 

  13. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  CAS  Google Scholar 

  14. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  CAS  Google Scholar 

  15. Zhang D, Yin J, He F, Ge NL, Wu ZQ, Ding YS (2015) Synthesis of poly(ethylene glycol) functionalized star-shaped tricationic imidazolium based ionic liquid. Chin J Polymr Sci 33:245–255

    Article  CAS  Google Scholar 

  16. Chen BK, Wu TY, Chang YM, Chen AF (2013) Ductile polylactic acid prepared with ionic liquids. Chem Eng J 215-216:886–893

    Article  CAS  Google Scholar 

  17. Dias AMA, Marceneiro S, Braga MEM, Coelho JFJ, Ferreira AGM, Simões PN, Veiga HIM, Tomé LC, Marrucho IM, Esperança JMSS, Matias AA, Duarte CMM, Rebelo LPN, de Sousa HC (2012) Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomater 8:1366–1379

    Article  CAS  Google Scholar 

  18. Gui H, Li Y, Chen S, Xu P, Zheng B, Ding Y (2014) Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macromol Res 22:583–591

    Article  CAS  Google Scholar 

  19. Obadia MM, Drockenmuller E (2016) Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. Chem Commun 52:2433–2450

    Article  CAS  Google Scholar 

  20. Obadia MM, Mudraboyina BP, Serghei A, Montarnal D, Drockenmuller E (2015) Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C–N bonds. J Am Chem Soc 137:6078–6083

    Article  CAS  Google Scholar 

  21. Dimitrov-Raytchev P, Beghdadi S, Serghei A, Drockenmuller E (2013) Main-chain 1,2,3-triazolium-based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. J Polym Sci Part A: Polym Chem 51:34–38

    Article  CAS  Google Scholar 

  22. Meunier SJ, Wu QQ, Wang SN, Roy R (1997) Synthesis of hyperbranched glycodendrimers incorporating alpha-thiosialosides based on a gallic acid core. Can J Chem 75:1472–1482

    Article  Google Scholar 

  23. Makiguchi K, Satoh T, Kakuchi T (2011) Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 44:1999–2005

    Article  CAS  Google Scholar 

  24. Liu Z, Hu J, Sun J, Liu G (2010) Effect of water addition on the coupling of homopolymers by click chemistry. J Polym Sci Part A: Polym Chem 48:4922–4928

    Article  CAS  Google Scholar 

  25. Sun J, Hu J, Liu G, Xiao D, He G, Lu R (2011) Efficient synthesis of well-defined amphiphilic cylindrical brushes polymer with high grafting density: interfacial “click” chemistry approach. J Polym Sci Part A: Polym Chem 49:1282–1288

    Article  CAS  Google Scholar 

  26. Presolski SI, Hong V, Cho SH, Finn MG (2010) Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc 132:14570–14576

    Article  CAS  Google Scholar 

  27. Yuan YY, Wang YC, Du JZ, Wang J (2008) Synthesis of amphiphilic ABC 3-miktoarm star terpolymer by combination of ring-opening polymerization and “click” chemistry. Macromolecules 41:8620–8625

    Article  CAS  Google Scholar 

  28. Xue H, Shreeve JM (2015) Energetic ionic liquids from azido derivatives of 1,2,4-triazole. Adv Mater 17:2142–2146

    Article  Google Scholar 

  29. Cheng W, Chen X, Sun J, Wang J, Zhang S (2013) SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Cata Today 200:117–124

    Article  CAS  Google Scholar 

  30. Shuai X, Merdan T, Unger F, Wittmar M, Kissel T (2003) Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules 36:5751–5759

    Article  CAS  Google Scholar 

  31. Sanghi S, Willett E, Versek C, Tuominen M, Coughlin EB (2012) Physicochemical properties of 1,2,3-triazolium ionic liquids. RSC Adv 2:848–853

    Article  CAS  Google Scholar 

  32. Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183

    Article  CAS  Google Scholar 

  33. Broz ME, VanderHart DL, Washburn NR (2003) Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 24:4181–4190

    Article  CAS  Google Scholar 

  34. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26:222–231

    Article  CAS  Google Scholar 

  35. He Y, Zhu B, Kai W, Inoue Y (2004) Nanoscale-confined and fractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate). Macromolecules 37:3337–3345

    Article  CAS  Google Scholar 

  36. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  37. Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50:13789–13798

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51373045, 21404030, 51673056) and the Fundamental Research Funds for the Central Universities (JZ2016YYPY0062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibing Wei or Yunsheng Ding.

Electronic supplementary material

ESM 1

(DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhang, D., Zhou, Y. et al. A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 24, 787–795 (2018). https://doi.org/10.1007/s11581-017-2234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2234-3

Keywords

Navigation