Skip to main content
Log in

Bentonite-modified electrochemical sensors: a brief overview of features and applications

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bentonites are promising materials for electrochemical sensing because of their unique physicochemical properties. They have relatively high surface area, good adsorption and ion-exchange ability, highly tunable surface and interlayer composition, non-toxic nature, and excellent biocompatibility. Moreover, they are outstanding substrates for stable immobilization of different functional moieties. The primary focus of this review article is to highlight the applications of bentonite-modified electrodes for the analysis of organic and inorganic analytes in different matrices. A brief summary on the necessity of analysis of different compounds is provided. For the first time, features and applications of bentonite-modified electrodes are critically appraised. The key features of bentonite-modified electrodes that enhance their electrocatalytic activity toward detection of certain target analytes are highlighted. At the end, an account of current status of bentonite-modified electrodes along with future research directions is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAB:

Acid-activated bentonite

AB113:

Acid Blue 113

AdSLSV:

Adsorptive stripping linear sweep voltammetry

AgNPs:

Silver nanoparticles

ASV:

Adsorptive stripping voltammetry

Au-bt:

AuNP/bentonite

AY17:

Acid Yellow 17

BCH:

Bentonite modified with HDTMA

BTMA+-B:

Benzyltrimethylammonium–bentonite

BV:

Hybrid of VXG + bentonite

CA:

Chronoamperometry

CMC:

Carboxymethylcellulose

CPE:

Carbon paste electrode

CPZ:

Chlordiazepoxide hydrochloride

CV:

Cyclic voltammetry

DA:

Dopamine

dmbpy:

4,4′-Dimethyl-2,2′-bipyridine

DPV:

Differential pulse voltammetry

DTMA:

Dodecyl trimethylammonium

DZ:

Diazepam

ErGO:

Electrochemically reduced graphene oxide

GCE:

Glassy carbon electrode

GO:

Graphene oxide

HDME:

Hanging mercury drop electrode

HDTMA:

Hexadecyltrimethylammonium bromide

HPW:

12-Ttungstophosphoric acid

IZ:

Isoniazid

LCAH:

Local clay modified with aluminum and HDTMA

LCH:

Local clay modified with HDTMA

LOD:

Limit of detection

LR2B:

Lanaset Red2B

MMT:

Montmorillonite

NPs:

Nanoparticles

phen:

1,10-Phenanthroline

PTFE:

Polytetrafluoroethylene

SWAdCSV:

Square wave adsorptive cathodic stripping voltammetry

SWV:

Square wave voltammetry

TMA:

Tetramethylammonium

VXG:

Vanadium (V) oxide xerogels

WHO:

World health organization

ᅟ:

(Bentonite, bent, bt, B, all represent bentonite)

References

  1. Sajid M, Basheer C (2016) Layered double hydroxides: emerging sorbent materials for analytical extractions. TrAC Trends Anal Chem 75:174–182. doi:10.1016/j.trac.2015.06.010

    Article  CAS  Google Scholar 

  2. Önal M, Sarıkaya Y (2007) Preparation and characterization of acid-activated bentonite powders. Powder Technol 172:14–18. doi:10.1016/j.powtec.2006.10.034

    Article  Google Scholar 

  3. Nones J, Riella HG, Trentin AG, Nones J (2015) Effects of bentonite on different cell types: a brief review. Appl Clay Sci 105:225–230. doi:10.1016/j.clay.2014.12.036

    Article  Google Scholar 

  4. Hassan MS, Abdel-Khalek NA (1998) Beneficiation and applications of an Egyptian bentonite. Appl Clay Sci 13:99–115. doi:10.1016/S0169-1317(98)00021-0

    Article  CAS  Google Scholar 

  5. Koch D (2002) Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Appl Clay Sci 21:1–11. doi:10.1016/S0169-1317(01)00087-4

    Article  CAS  Google Scholar 

  6. Yadav DK, Gupta R, Ganesan V et al (2016) Electrochemical sensing platform for hydrogen peroxide determination at low reduction potential using silver nanoparticle-incorporated bentonite clay. J Appl Electrochem 46:103–112. doi:10.1007/s10800-015-0904-2

    Article  CAS  Google Scholar 

  7. Williams LB, Haydel SE (2010) Evaluation of the medicinal use of clay minerals as antibacterial agents. Int Geol Rev 52:745–770. doi:10.1080/00206811003679737

    Article  Google Scholar 

  8. Rastogi PK, Yadav DK, Pandey S et al (2016) Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III). J Chem Sci 128:349–356. doi:10.1007/s12039-016-1039-7

    Article  CAS  Google Scholar 

  9. Acar ET, Ortaboy S, Hisarlı G, Atun G (2015) Sensitive determination and electro-oxidative polymerization of azodyes on a carbon paste electrode modified with bentonite. Appl Clay Sci 105:131–141. doi:10.1016/j.clay.2014.12.035

    Article  Google Scholar 

  10. Tonle IK, Ngameni E, Tchieno FMM, Walcarius A (2015) Organoclay-modified electrodes: preparation, characterization and recent electroanalytical applications. J Solid State Electrochem 19:1949–1973. doi:10.1007/s10008-014-2728-0

    Article  CAS  Google Scholar 

  11. Sajid M, Nazal MK, Mansha M et al (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal Chem 76:15–29. doi:10.1016/j.trac.2015.09.006

    Article  CAS  Google Scholar 

  12. Zen J-M, Senthil Kumar A, Tsai D-M (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15:1073–1087. doi:10.1002/elan.200390130

    Article  CAS  Google Scholar 

  13. Dong S, Wang Y (1989) The application of chemically modified electrodes in analytical chemistry. Electroanalysis 1:99–106. doi:10.1002/elan.1140010203

    Article  CAS  Google Scholar 

  14. Ambrosi A, Bonanni A, Sofer Z et al (2011) Electrochemistry at chemically modified graphenes. Chem Eur J 17:10763–10770. doi:10.1002/chem.201101117

    Article  CAS  Google Scholar 

  15. Tonelli D, Scavetta E, Giorgetti M (2013) Layered-double-hydroxide-modified electrodes: electroanalytical applications. Anal Bioanal Chem 405:603–614. doi:10.1007/s00216-012-6586-2

    Article  CAS  Google Scholar 

  16. Kawde A-N, Baig N, Sajid M (2016) Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications. RSC Adv 6:91325–91340. doi:10.1039/C6RA17466C

    Article  CAS  Google Scholar 

  17. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sensors Actuators B Chem 213:515–533. doi:10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  18. Lee SM, Zirlianngura AJ, Tiwari D (2016) Electrochemical sensor for trace determination of cadmium(II) from aqueous solutions: use of hybrid materials precursors to natural clays. Int J Environ Anal Chem 96:490–504. doi:10.1080/03067319.2016.1172220

    Article  CAS  Google Scholar 

  19. Tiwari D, Zirlianngura, Lee SM (2016) Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes. J Electroanal Chem. doi:10.1016/j.jelechem.2016.11.051

  20. Abbaspour A, Izadyar A (2006) Platinum electrode coated with a bentonite–carbon composite as an environmental sensor for detection of lead. Anal Bioanal Chem 386:1559–1565. doi:10.1007/s00216-006-0727-4

    Article  CAS  Google Scholar 

  21. Bouwe RGB, Tonle IK, Letaief S et al (2011) Structural characterisation of 1,10-phenanthroline–montmorillonite intercalation compounds and their application as low-cost electrochemical sensors for Pb(II) detection at the sub-nanomolar level. Appl Clay Sci 52:258–265. doi:10.1016/j.clay.2011.02.028

    Article  CAS  Google Scholar 

  22. Rezaei B, Ghiaci M, Sedaghat ME (2008) A selective modified bentonite–porphyrin carbon paste electrode for determination of Mn(II) by using anodic stripping voltammetry. Sens Actuator B-Chem 131:439–447. doi:10.1016/j.snb.2007.12.017

    Article  CAS  Google Scholar 

  23. Cantor KP, Lubin JH (2007) Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 222:252–257. doi:10.1016/j.taap.2007.01.026

    Article  CAS  Google Scholar 

  24. Motshekga SC, Ray SS, Onyango MS, Momba MNB (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339. doi:10.1016/j.clay.2015.06.010

    Article  CAS  Google Scholar 

  25. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58. doi:10.2478/v10102-012-0009-2

    Article  CAS  Google Scholar 

  26. Duzgoren-Aydin NS (2007) Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ 385:182–195. doi:10.1016/j.scitotenv.2007.06.047

    Article  CAS  Google Scholar 

  27. Mojovic Z, Rozic L, Novakovic T et al (2012) Electrochemical behavior of H3PW12O40/ acid-activated bentonite powders. Chem Ind Chem Eng Q 18:329–338. doi:10.2298/CICEQ110907009M

    Article  CAS  Google Scholar 

  28. Azad UP, Turllapati S, Rastogi PK, Ganesan V (2014) Tris(1,10-phenanthroline)iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination. Electrochim Acta 127:193–199. doi:10.1016/j.electacta.2014.02.012

    Article  CAS  Google Scholar 

  29. Mendoza MO, EP Ortega, OA de Fuentes, et al (2014) Chitosan/bentonite nanocomposite: preliminary studies of its potentiometric response to nitrate ions in water. In: 2014 I.E. 9th Iberoam. Congr. Sensors. IEEE, pp 1–4

  30. Tandel RD, Pawar SK, Seetharamappa J (2016) Synthesis and characterization of bentonite-reduced graphene oxide composite: application as sensor for a neurotransmitter, dopamine. J Electrochem Soc 163:H705–H713. doi:10.1149/2.0991608jes

    Article  CAS  Google Scholar 

  31. Rabi-Stanković AA, Mojović Z, Milutinović-Nikolić A et al (2013) Electrooxidation of p-nitrophenol on organobentonite modified electrodes. Appl Clay Sci 77:61–67. doi:10.1016/j.clay.2013.04.003

    Article  Google Scholar 

  32. Teradal NL, Narayan PS, Seetharamappa J, Satpati AK (2015) Electrosensing of an alpha-adrenergic agonist psychoactive methyldopa using a sodium bentonite–graphene oxide nanocomposite. Anal Methods 7:5611–5618. doi:10.1039/C5AY01021G

    Article  CAS  Google Scholar 

  33. Naggar AH, ElKaoutit M, Naranjo-Rodriguez I et al (2012) Use of a Sonogel-Carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide hydrochloride in tablets and their metabolite oxazepam in urine. Talanta 89:448–454. doi:10.1016/j.talanta.2011.12.061

    Article  CAS  Google Scholar 

  34. Prashanth SN, Teradal NL, Seetharamappa J et al (2014) Fabrification of electroreduced graphene oxide–bentonite sodium composite modified electrode and its sensing application for linezolid. Electrochim Acta 133:49–56. doi:10.1016/j.electacta.2014.04.022

    Article  CAS  Google Scholar 

  35. Azad UP, Prajapati N, Ganesan V (2015) Selective determination of isoniazid using bentonite clay modified electrodes. Bioelectrochemistry 101:120–125. doi:10.1016/j.bioelechem.2014.08.011

    Article  CAS  Google Scholar 

  36. Gupta VK, Jain AK, Maheshwari G (2007) Manganese (II) selective PVC based membrane sensor using a Schiff base. Talanta 72:49–53. doi:10.1016/j.talanta.2006.09.030

    Article  CAS  Google Scholar 

  37. Colombini MP, Fuoco R (1983) Determination of manganese at levels in natural waters by differential pulse polarography. Talanta 30:901–905. doi:10.1016/0039-9140(83)80211-2

    Article  CAS  Google Scholar 

  38. Gassara F, Kouassi AP, Brar SK, Belkacemi K (2016) Green alternatives to nitrates and nitrites in meat-based products—a review. Crit Rev Food Sci Nutr 56:2133–2148. doi:10.1080/10408398.2013.812610

    Article  CAS  Google Scholar 

  39. Michael Raj F, Jeya Rajendran A (2017) Synthesis, structural, optical and dielectric properties of cadmium sulfide nanoparticles as photocathode for a solar cell. In: Ebenezar J (ed) Recent trends inmaterials science and applications. Springer Proceedings in Physics, vol 189. Springer, Cham

  40. Udomphan K, Wongchaisuwat A, Meesuk L (2010) CdS-intercalated bentonite/carbon composite as electrode for sulfide ion. Mater Sci Forum 663–665:690–693. doi:10.4028/www.scientific.net/MSF.663-665.690

    Article  Google Scholar 

  41. Udomphan K, Wongchaisuwat A, Meesuk L (2011) CdS-intercalated bentonite: a novel sulfide ion selective electrode. Appl Mech Mater 110–116:472–477. doi:10.4028/www.scientific.net/AMM.110-116.472

    Article  Google Scholar 

  42. Sohail M, Adeloju SB (2016) Nitrate biosensors and biological methods for nitrate determination. Talanta 153:83–98. doi:10.1016/j.talanta.2016.03.002

    Article  CAS  Google Scholar 

  43. Heli H, Pishahang J (2014) Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim Acta 123:518–526. doi:10.1016/j.electacta.2014.01.032

    Article  CAS  Google Scholar 

  44. Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23:51–57. doi:10.2165/00139709-200423010-00006

    Article  CAS  Google Scholar 

  45. Kawde A-N, Aziz M, Baig N, Temerk Y (2015) A facile fabrication of platinum nanoparticle-modified graphite pencil electrode for highly sensitive detection of hydrogen peroxide. J Electroanal Chem 740:68–74. doi:10.1016/j.jelechem.2015.01.005

    Article  CAS  Google Scholar 

  46. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32. doi:10.1007/s00604-012-0904-4

    Article  CAS  Google Scholar 

  47. Chung C, Kim Y-K, Shin D et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224. doi:10.1021/ar300159f

    Article  CAS  Google Scholar 

  48. ElMekawy A, Hegab HM, Losic D et al (2017) Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sust Energ Rev 72:1389–1403. doi:10.1016/j.rser.2016.10.044

    Article  CAS  Google Scholar 

  49. Sajid M, Basheer C, Daud M, Alsharaa A (2017) Evaluation of layered double hydroxide/graphene hybrid as a sorbent in membrane-protected stir-bar supported micro-solid-phase extraction for determination of organochlorine pesticides in urine samples. J Chromatogr A 1489:1–8. doi:10.1016/j.chroma.2017.01.089

    Article  CAS  Google Scholar 

  50. Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym 113:525–531. doi:10.1016/j.carbpol.2014.07.047

    Article  CAS  Google Scholar 

  51. Keith L, Telliard W (1979) ES&T special report: priority pollutants: I-a perspective view. Environ Sci Technol 13:416–423. doi:10.1021/es60152a601

    Article  Google Scholar 

  52. Rabi-Stanković AA, Milutinović-Nikolić A, Jović-Jovičić N et al (2012) p-Nitrophenol electro-oxidation on a BTMA+-bentonite-modified electrode. Clay Clay Miner 60:291–299. doi:10.1346/CCMN.2012.0600306

    Article  Google Scholar 

  53. Banković P, Mojović Z, Milutinović-Nikolić A et al (2010) Mixed pillared bentonite for electrooxidation of phenol. Appl Clay Sci. doi:10.1016/j.clay.2010.04.012

  54. Mojović Z, Jović-Jovičić N, Milutinović-Nikolić A et al (2011) Phenol determination on HDTMA-bentonite-based electrodes. J Hazard Mater 194:178–184. doi:10.1016/j.jhazmat.2011.07.084

    Article  Google Scholar 

  55. Mojović Z, Jović-Jovičić N, Banković P et al (2011) Electrooxidation of phenol on different organo bentonite-based electrodes. Appl Clay Sci. doi:10.1016/j.clay.2010.12.008

  56. Rodríguez IN, Muñoz Leyva JA, Hidalgo Hidalgo de Cisneros JL (1997) Use of a bentonite-modified carbon paste electrode for the determination of some phenols in a flow system by differential-pulse voltammetry. Analyst 122:601–604. doi:10.1039/a606837e

    Article  Google Scholar 

  57. Rodríguez IN, Muñoz Leyva JA, Hidalgo J, de Cisneros H (1997) Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry. Anal Chim Acta 344:167–173. doi:10.1016/S0003-2670(97)00043-3

    Article  Google Scholar 

  58. Shen D, Fan J, Zhou W et al (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172:99–107. doi:10.1016/j.jhazmat.2009.06.139

    Article  CAS  Google Scholar 

  59. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196. doi:10.1016/S0143-7208(03)00064-0

    Article  CAS  Google Scholar 

  60. Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F et al (2014) Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal Chim Acta 844:80–89. doi:10.1016/j.aca.2014.06.007

    Article  CAS  Google Scholar 

  61. del Mar Cordero-Rando M, Hidalgo-Hidalgo de Cisneros JL, Blanco E, Naranjo-Rodríguez I (2002) The Sonogel-Carbon electrode as a sol−gel graphite-based electrode. Anal Chem 74:2423–2427. doi:10.1021/AC010782U

    Article  Google Scholar 

  62. Anaissi FJ, Toma HE (2005) Catechol incorporation and detection using bentonite-vanadium(V) oxide xerogels. Sens Actuator B-Chem 110:175–180. doi:10.1016/j.snb.2005.01.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support provided by CEW, KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M. Bentonite-modified electrochemical sensors: a brief overview of features and applications. Ionics 24, 19–32 (2018). https://doi.org/10.1007/s11581-017-2201-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2201-z

Keywords

Navigation