Skip to main content
Log in

Influences of LiCF3SO3 and TiO2 nanofiller on ionic conductivity and mechanical properties of PVA:PVdF blend polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In recent years, solid polymer electrolytes have been extensively studied due to its flexibility, electrochemical stability, safety, and long life for its applications in various electrochemical devices. Interaction of LiCF3SO3 and TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20—system-A possessing σ ~ 2.8 × 10−7 Scm−1 at 303 K) blend polymer electrolyte have been analyzed in the present study. LiCF3SO3 has been doped in system-A, and the optimized LiCF3SO3 doped sample (80:20:15-system-B possessing σ ~ 2.7 × 10−3 Scm−1 at 303 K) has been identified. The effect of different concentration of TiO2 in system-B has been analyzed and the optimized system is considered as system-C (σ ~ 3.7 × 10−3 Scm−1 at 303 K). The cost effective, solution casting technique has been used for the preparation of the above polymer electrolytes. Vibrational, structural, mechanical, conductivity, thermal, and electrochemical properties have been studied using FTIR, XRD, stress-strain, AC impedance spectroscopic technique, DSC and TGA, LSV, and CV respectively to find out the optimized system. System-C possessing the highest ionic conductivity, higher tensile strength, low crystallinity, high thermal stability, and high electrochemical stability (greater than 5 V vs Li/Li+) is well suitable for lithium ion battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385

    Article  CAS  Google Scholar 

  2. Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186

    Article  CAS  Google Scholar 

  3. Ramkumar R, Sundaram MM (2016) A biopolymer gel-decorated cobalt molybdate nanowafer: effective graft polymer cross-linked with an organic acid for better energy storage. New J Chem 40:2863–2877

    Article  CAS  Google Scholar 

  4. Khan MS, Gul R, Wahid MS (2013) Studies on thin films of PVC-PMMA blend polymer electrolytes. J Polym Eng 33(7):633–638

    Article  CAS  Google Scholar 

  5. Ashrafi R, Sahu DK, Kesharwani P, Ganjir M, Agrawal RC (2014) Ag+-ion conducting nano-composite polymer electrolytes (NCPEs): synthesis, characterization and all-solid-battery studies. J Non-Cryst Solids 391:91–95

    Article  CAS  Google Scholar 

  6. Verma ML, Minakshi M, Singh NK (2014) Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochim Acta 137:497–503

    Article  CAS  Google Scholar 

  7. Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Physica B 437:53–57

    Article  CAS  Google Scholar 

  8. TianKhoon L, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ionics 276:72–79

    Article  CAS  Google Scholar 

  9. Rostiroll B, Laureto E, Da Silva MAT, de Santana H, Dias IFL, Duarte JL (2013) Influence of TiO2 nanoparticles on the optical and structural properties of PPV thin films converted at low temperatures. Express Polym Lett 7:716–772

    Article  Google Scholar 

  10. Cao J, Wang L, Shang Y, Fang M, Deng L, Gao J, Li J, Chen H, He X (2013) Dispersibility of nano-TiO2on performance of composite polymer electrolytes for Li-ion batteries. Electrochim Acta 111:674–679

    Article  CAS  Google Scholar 

  11. Polu AR, Rhee H-W (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Indust Engg Chem 31:323–329

    Article  CAS  Google Scholar 

  12. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 96-97:42–48

    Article  CAS  Google Scholar 

  13. Helan Flora X, Ulaganathan M, Rajendran S (2012) Influence of lithium salt concentration on PAN-PMMA blend polymer electrolytes. Int J Electrochem Sci 7:7451–7462

    CAS  Google Scholar 

  14. Verma ML, Minakshi M, Singh NK (2014) Structural and (2014) electrochemical properties of nanocomposite polymer electrolyte for electrochemical devices. Ind Eng Chem Res 53:14993–15001

    Article  CAS  Google Scholar 

  15. Zhou L, Wu N, Cao Q, Jing B, Wang X, Wang Q, Kuang H (2013) A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ionics 249–250:93–97

    Article  Google Scholar 

  16. Oh B, Jung WI, Kim D-W, Rhee HW (2002) Preparation of UV curable gel polymer electrolytes and their electrochemical properties. Bull Kor Chem Soc 23:683–687

    Article  CAS  Google Scholar 

  17. Kim DW, Sun YK (1998) Polymer electrolytes based on acrylonitrile-methyl methacrylate-styrene terpolymers for rechargeable lithium polymer batteries. J Electrochem Soc 145:1958–1963

    Article  CAS  Google Scholar 

  18. Li W, Xing Y, Xing X, Li Y, Yang G, Xu L (2013) PVDF-based composite microporous gel polymer electrolytes containing a novelsingle ionic conductor SiO2(Li+). Electrochim Acta 112:183–190

    Article  CAS  Google Scholar 

  19. Huang B, Jang YI, Chiang YM, Sadoway DR (1998) Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications. J Appl Electrochem 28:1365–1369

    Article  CAS  Google Scholar 

  20. Cao J, Hu G, Peng Z, Du K, Cao Y (2015) Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries. J Power Sources 281:49–55

    Article  CAS  Google Scholar 

  21. Zhu X, Shang K, Jiang X, Ai X, Yang H, Cao Y (2014) Enhanced electro chemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceram Int 40:11245–11249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hema, M., Tamilselvi, P. & Hirankumar, G. Influences of LiCF3SO3 and TiO2 nanofiller on ionic conductivity and mechanical properties of PVA:PVdF blend polymer electrolyte. Ionics 23, 2707–2714 (2017). https://doi.org/10.1007/s11581-016-1925-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1925-5

Keywords

Navigation