Skip to main content
Log in

The physical and electrochemical properties of poly(vinylidene chloride-co-acrylonitrile)-based polymer electrolytes prepared with different plasticizers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium ion-conducting membranes with poly(ethylene oxide) (PEO)/poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN)/lithium perchlorate (LiClO4) were prepared by solution casting method. Different plasticizers ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (gBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dibutyl phthalate (DBP) were complexed with the fixed ratio of PEO/PVdC-co-AN/LiClO4. The preparation and physical and electrochemical properties of the gel polymer electrolytes have been briefly elucidated in this paper. The maximum ionic conductivity value computed from the ac impedance spectroscopy is found to be 3 × 10−4 S cm−1 for the EC-based system. From DBP-based system down to EC-based system, a decrease of crystallinity and an increase of amorphousity are depicted by X-ray diffraction technique, the decrease of band gap energy is picturized through UV–visible analysis, the decrease of glass transition temperature is perceived from differential scanning calorimetry plots, and the reduction of photoluminescence intensity is described through photoluminescence spectroscopy study at an excitation wavelength of 280 nm. Atomic force microscopic images of EC-based polymer electrolyte film show the escalation of micropores. Fourier transform infrared spectroscopy study supports the complex formation and the interaction between the polymers, salt, and plasticizer. The maximum thermal stability is obtained from thermogravimetry/differential thermal analysis, which is found to be 222 °C for the sample complexed with EC. The cyclic voltagram of the sample having a maximum ionic conductivity shows a small redox current at the anode, and cathode and the chemical stability is confirmed by linear sweep voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  2. Scrosati B (2001) New approaches to developing lithium polymer batteries. Chem Rec 1:173–181

    Article  CAS  Google Scholar 

  3. Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R Reports 33:109–134

    Article  Google Scholar 

  4. Gray FM (1991) Solid polymer electrolytes—fundamentals and technological applications. VCH, New York

    Google Scholar 

  5. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  6. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Brit Polym J 7:319–327

    Article  CAS  Google Scholar 

  7. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  CAS  Google Scholar 

  8. Xu Q, Wan G (1993) Rechargeable Li/LiMn2O4 batteries with a polymeric solid electrolyte. J Power Sources 41:315–320

    Article  CAS  Google Scholar 

  9. Selvaraj II, Chaklanobis S, Chadrasekhar V (1995) Conductivity studies on poly(methoxyethoxyethylmethacrylate)-lithium salt complexes. J Electrochem Soc 142:366–370

    Article  CAS  Google Scholar 

  10. Huang B, Wang Z, Chen L, Xue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91:279–284

    Article  CAS  Google Scholar 

  11. Wieczore KW, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258

    Article  Google Scholar 

  12. Maccallum JR, Smith MJ, Vincent CA (1981) The effects of radiation-induced crosslinking on the conductance of LiClO4/PEO electrolytes. Solid State Ionics 11:307–312

    Article  Google Scholar 

  13. Watanabe M, Nagano S, Sanui K, Ogata N (1987) Structure-conductivity relationship in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g-poly(ethylene oxide)] and lithium perchlorate. J Power Sources 20:327–332

    Article  CAS  Google Scholar 

  14. Inganäs O (1988) Electroactive polymer blends. Brit Polym J 20:233–236

    Article  Google Scholar 

  15. Kim DW, Park JK, Rhee HW (1996) Conductivity and thermal studies of solid polymer electrolytes prepared by blending poly(ethylene oxide), poly (oligo[oxyethylenel]oxy sebacoyl) and lithium perchlorate. Solid State Ionics 83:49–56

    Article  CAS  Google Scholar 

  16. Nagasubramanian G, Attia AI, Halpert G (1994) A polyacrylonitrile-based gelled electrolyte: electrochemical kinetic studies. J Appl Electrochem 24:298–302

    Article  Google Scholar 

  17. Stallworth PE, Greenbaum SG, Croce F, Slane S, Salomon M (1995) Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochim Acta 40:2137–2141

    Article  CAS  Google Scholar 

  18. Morales JLA (1997) Thermal and electrical characterization of plasticized polymer. Solid State Ionics 96:99–106

    Article  CAS  Google Scholar 

  19. Fan L, Nan CW, Dang Z (2002) Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4 electrolytes. Electrochim Acta 47:3541–3544

    Article  CAS  Google Scholar 

  20. Croce F, Curini R, Martinelli A, Persi L, Ronchi F, Scrosati B (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638

    Article  CAS  Google Scholar 

  21. Nann C-W (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116

    Article  Google Scholar 

  22. Gozdz AS, Schmutz CN, Tarascon JM (1994) Rechargeable lithium intercalation battery with hybrid polymeric electrolyte, US patent 5296318A

  23. Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360

    Article  CAS  Google Scholar 

  24. Shi Q, Yu M, Zhou X, Yan Y, Wan C (2002) Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries. J Power Sources 103:286–292

    Article  CAS  Google Scholar 

  25. Zulfiqar S, Ahmad S (1999) Thermal degradation of blends of PVC with polysiloxane—1. Polym Degrad Stab 65:243–247

    Article  CAS  Google Scholar 

  26. KiranKumar K, Ravi M, Pavani Y, Bhavan S, Sharma AK, Narasimha Rao VVR (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B 406:1706–1712

    Article  CAS  Google Scholar 

  27. Shanthi M, Mathew CM, Ulaganathan M, Rajendran S (2013) FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4. Spectrochim Acta A 109:105–109

    Article  CAS  Google Scholar 

  28. Painter PC, Coleman MM (1997) Fundamentals of polymer science: an introductory text. Technomic Publishing, Lancaster

    Google Scholar 

  29. Garton A (1992) Infrared spectroscopy of polymer blends, composites and surfaces. Carl Hanser Verlag, Munich

    Google Scholar 

  30. Krimm S, Liang CY (1956) Infrared spectra of high polymers. IV. Poly(vinyl chloride), poly(vinylidene chloride), and copolymers. J Polym Sci 22:95–112

    Article  CAS  Google Scholar 

  31. Suthanthiraraj SA, Sheeba DJ (2007) Structural investigation on PEO-based polymer electrolytes dispersed with Al2O3 nanoparticles. Ionics 13:447–450

    Article  CAS  Google Scholar 

  32. Papke BL (1982) Vibrational spectroscopic determination of structure and Ion pairing in complexes of poly(ethylene oxide) with lithium salts. J Electrochem Soc 129:1434–1438

    Article  CAS  Google Scholar 

  33. Rigas B, Morgellon S, Goldman IS, Wong PT (1990) Human colorectal cancers display abnormal Fourier-transform infrared spectra. Proc Natl Acad Sci U S A 87:8140–8144

    Article  CAS  Google Scholar 

  34. Bertie JE, Othen DA (1973) On the assignment of the infrared spectrum of ethylene oxide. Can J Chem 51:1155–1158

    Article  CAS  Google Scholar 

  35. Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. J Electroanal Chem 408:113–118

    Article  Google Scholar 

  36. Ostrovski D, Brodin A, Torell M, Appetecchi GB, Scrosati BJ (1998) Molecular and ionic interactions in polyacrylonitrile- and poly(methylmetacrylate)-based gel electrolytes. J Chem Phys 109:7618–7624

    Article  Google Scholar 

  37. Watanabe M, Ogata N, MacCullum JR, Vincent CA (1987) Polymer electrolyte review, vol 1. Elsevier, New York

    Google Scholar 

  38. Sung HY, Wang YY, Wan CC (1998) Preparation and characterisation of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J Electrochem Soc 145:1207–1211

    Article  CAS  Google Scholar 

  39. Abraham KM, Alamgir M, Hoffman DK (1995) Polymer electrolytes reinforced by Celgard membranes. J Electrochem Soc 142:683–687

    Article  CAS  Google Scholar 

  40. Mark HF (1964) Encyclopedia of polymer science and engineering, vol 1. Wiley Interscience Publication, John Wiley & Sons, New York

    Google Scholar 

  41. Ulaganathan M, Rajendran S (2010) Li ion conduction on plasticizer-added PVAc-based hybrid polymer electrolytes. Ionics 16:667–672

    Article  CAS  Google Scholar 

  42. Mathew CM, Kesavan K, Rajendran S (2014) Analysis of plasticizer influence in poly(vinyl acetate)/poly(vinylidene fluoride) polymer blend electrolyte. Ionics 20:439–443

    Article  CAS  Google Scholar 

  43. Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44:5372–5376

    Article  CAS  Google Scholar 

  44. Ulaganathan M, Pethaiah SS, Rajendran S (2011) Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mater Chem Phys 129:471–476

    Article  CAS  Google Scholar 

  45. Wen Z, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O (2000) Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources 90:20–26

    Article  CAS  Google Scholar 

  46. Wang H, Huang H, Wunder SL (2000) Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-Ion batteries. J Electrochem Soc 147:2853–2861

    Article  CAS  Google Scholar 

  47. Hayamizu K, Aihara Y, Price WSJ (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO 2CF3) 2. J Chem Phys 113:4785–4793

    Article  CAS  Google Scholar 

  48. Park US, Hong YJ, Oh MS (1996) Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (PAN)-based polymer. Electrochim Acta 41:849–855

    Article  CAS  Google Scholar 

  49. Aravindan V, Vickraman P, Kumar TP (2008) Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J Non-Cryst Solids 354:3451–3457

    Article  CAS  Google Scholar 

  50. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  51. Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B 405:958–964

    Article  CAS  Google Scholar 

  52. Maouche N, Nessark B (2011) Cyclic voltammetry and impedance spectroscopy behavior studies of polyterthiophene modified electrode. Int J Electrochem Sci 2011:1–5

    Article  Google Scholar 

  53. Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Inter 3:2063–2073

    Article  CAS  Google Scholar 

  54. Appetecchi GB, Croce F, Scrosati B (1997) High-performance electrolyte membranes for plastic lithium batteries. J Power Sources 66:77–82

    Article  CAS  Google Scholar 

  55. Abidin SZZ, Ali AMM, Hassan OH, Yahya MZA (2013) Electrochemical studies on cellulose acetate-LiBOB polymer gel electrolytes. Int J Electrochem Sci 8:7320–7326

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbu, C., Rajendran, S., Kesavan, K. et al. The physical and electrochemical properties of poly(vinylidene chloride-co-acrylonitrile)-based polymer electrolytes prepared with different plasticizers. Ionics 22, 229–240 (2016). https://doi.org/10.1007/s11581-015-1535-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1535-7

Keywords

Navigation