Skip to main content
Log in

Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes based on high molecular weight poly(ethylene oxide) (PEO) complexed with lithium difluoro(oxalato)borate (LiDFOB) salt in various EO:Li molar ratios from 30:1 to 8:1 were prepared by using solution casting technique. Ion–polymer interaction, structural, thermal, and ionic conductivity studies have been reported by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), polarized optical microscopy (POM), differential scanning calorimeter (DSC), and impedance analysis. FTIR spectral studies suggested that the interaction of Li+ cations with the ether oxygen of PEO, where a triple peak broad band centered at 1105 cm−1, corresponds to C–O–C stretching and extreme deformation occurs. XRD, POM, and DSC indicated that the inclusion of LiDFOB salt could reduce the crystallinity of PEO. The melting temperature of PEO shifted to lower temperature side by the addition of LiDFOB. The glass transition temperature obtained for the system 10:1 was −38.2 °C. An increase in the ionic conductivity from 3.95 × 10−9 to 3.18 × 10−5 S/cm at room temperature (23 °C) was obtained through the addition of LiDFOB to a high molecular weight PEO. In addition, the ionic conductivity of the polymer electrolyte films followed an Arrhenius relation, and the activation energy decreased with increasing LiDFOB concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  CAS  Google Scholar 

  2. Giddey S, Badwal SPS (2013) Polymer electrolyte membrane fuel cell as a hydrogen flow rate monitoring device. Ionics 19:523–528

    Article  CAS  Google Scholar 

  3. Singh PK, Kim KW, Rhee HW (2009) Quantum dot doped solid polymer electrolytes for device application. Electrochem Commun 11:1247–1250

    Article  CAS  Google Scholar 

  4. Sequeira CAC, Santos DMF (2010) Polymer electrolytes: fundamentals and applications. Woodhead Publishing Ltd., Cambridge, p 431

    Book  Google Scholar 

  5. Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2014) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer-salt-clay) solid polymer electrolyte. Ionics. doi:10.1007/s11581-014-1181-5

    Google Scholar 

  6. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51:5798–5800

    Article  CAS  Google Scholar 

  7. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  9. Mao G, Perea RF, Howells WS, Price DL, Saboungi ML (2000) Relaxation in polymer electrolytes on the nanosecond timescale. Nature 405:163–165

    Article  CAS  Google Scholar 

  10. Reddy MJ, Chu PP (2002) Optical microscopy and conductivity of poly(ethylene oxide) complexed with KI salt. Electrochim Acta 47:1189–1196

    Article  Google Scholar 

  11. Andersson AM, Edstrom K (2001) chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148:A1100–A1109

    Article  CAS  Google Scholar 

  12. Pasquier AD, Blyr A, Courjal P, Armatucci G, Gerand B, Tarascon JM (1999) Mechanism for limited 55 °C storage performance of Li1.05Mn1.95O4. J Electrochem Soc 146:428–436

    Article  Google Scholar 

  13. Jow TR, Xu K, Ding MS, Zhang SS, Allen JL, Amine K (2004) LiBOB-based electrolytes for Li-ion batteries for transportation applications. J Electrochem Soc 151:A1702–A1706

    Article  CAS  Google Scholar 

  14. Aravindan V, Vickraman P, Krishnaraj K (2009) Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB. Curr Appl Phys 9:1474–1479

    Article  Google Scholar 

  15. Zhang SS, Xu K, Jow TR (2002) Study of LiBF4 as an electrolyte salt for a Li-ion battery. J Electrochem Soc 149:A586–A590

    Article  CAS  Google Scholar 

  16. Zhou L, Li W, Xu M, Lucht B (2011) Investigation of the disproportionation reactions and equilibrium of lithium difluoro(oxalato) borate (LiDFOB). Electrochem Solid-State Lett 14:A161–A164

    Article  CAS  Google Scholar 

  17. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428

    Article  CAS  Google Scholar 

  18. Jow TR, Zhang SS, Xu K (2007) Additive for enhancing the performance of electrochemical cells. U.S. Pat 7172834

  19. Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J Power Sources 163:713–718

    Article  CAS  Google Scholar 

  20. Chen Z, Liu J, Amine K (2007) Lithium difluoro(oxalate)borate as salt for lithium-ion batteries. Electrochem Solid-State Lett 10:A45–A47

    Article  CAS  Google Scholar 

  21. Liu J, Chen Z, Busking S, Amine K (2007) Lithium difluoro(oxalate)borate as a functional additive for lithium-ion batteries. Electrochem Commun 9:475–479

    Article  Google Scholar 

  22. Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday Trans 89:3187–3203

    Article  CAS  Google Scholar 

  23. Dey SA, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide–polyethylene oxide solid polymer electrolyte. Solid State Commun 149:1282–1287

    Article  CAS  Google Scholar 

  24. Takahashi Y, Tadokoro H (1973) Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6:672–675

    Article  CAS  Google Scholar 

  25. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  26. Appetecchi GB, Henderson W, Villano P, Berrettoni M, Passerini S (2001) PEO-LiN(SO2CF2CF3)2 polymer electrolytes: 1. XRD, DSC, and ionic conductivity characterization. J Electrochem Soc 148:A1171–A1178

    Article  CAS  Google Scholar 

  27. Polu AR, Kumar R, Joshi GM (2014) Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics 20:675–679

    Article  CAS  Google Scholar 

  28. Han SD, Allen JL, Jonsson E, Johansson P, McOwen DW, Boyle PD, Henderson WA (2013) Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes. J Phys Chem C 117:5521–5531

    Article  CAS  Google Scholar 

  29. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational spectroscopy and ab initio studies of Lithium bis(oxalato)borate (LiBOB) in different solvents. J Phys Chem A 110:11467–11472

    Article  CAS  Google Scholar 

  30. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VVRN (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  CAS  Google Scholar 

  31. Tang Z, Wang J, Chena Q, He W, Shen C, Mao XX, Zhang J (2007) A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries. Electrochim Acta 52:6638–6643

    Article  CAS  Google Scholar 

  32. Rocco AM, Bielschowsky CE, Pereira RP (2003) Blends of poly(ethylene oxide) and poly(4-vinylphenol-co-2-hydroxyethyl methacrylate): thermal analysis, morphological behaviour and specific interactions. Polymer 44:361–368

    Article  CAS  Google Scholar 

  33. Rocco AM, Fonseca CP, Pereira RP (2002) A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer 43:3601–3609

    Article  CAS  Google Scholar 

  34. Frech R, Chintapalli S, Bruce PG, Vincent CA (1999) Crystalline and amorphous phases in the poly(ethylene oxide)-LiCF3SO3 system. Macromolecules 32:808–813

    Article  CAS  Google Scholar 

  35. Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405

    Article  CAS  Google Scholar 

  36. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96:406–410

    Article  CAS  Google Scholar 

  37. Ramesh S, Yuen TF, Shen CJ (2008) Conductivity and FTIR studies on PEO–LiX [X: CF3SO3 , SO4 2−] polymer electrolytes. Spectrochim Acta A 69:670–675

    Article  CAS  Google Scholar 

  38. Sundar M, Selladurai S (2006) Effect of fillers on magnesium–poly(ethylene oxide) solid polymer electrolyte. Ionics 12:281–286

    Article  CAS  Google Scholar 

  39. Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J Power Sources 109:340–346

    Article  Google Scholar 

  40. Yang Y, Huo H (2013) Investigation of structures of PEO-MgCl2 based solid polymer electrolytes. J Polym Sci B Polym Phys 51:1162–1174

    Article  CAS  Google Scholar 

  41. Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes. J Electroanal Chem 408:113–118

    Article  Google Scholar 

  42. Noor IS, Majid SR, Arof AK (2013) Poly(vinyl alcohol)–LiBOB complexes for lithium–air cells. Electrochim Acta 102:149–160

    Article  CAS  Google Scholar 

  43. Preechatiwong W, Schultz JM (1996) Electrical-conductivity of poly(ethylene oxide)-alkali metal salt systems and effects of mixed salts and mixed molecular-weights. Polymer 37:5109–5116

    Article  CAS  Google Scholar 

  44. Samir MASA, Alloin F, Gorecki W, Sanchez JY, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  CAS  Google Scholar 

  45. Bhide A, Hariharan K (2007) Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polym J 43:4253–4270

    Article  CAS  Google Scholar 

  46. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  47. Mitra S, Kulkarni AR (2002) Electrical conductivity studies on the plasticised PEO–DBP–CdX (X=Cl; SO4) polymer electrolytes. Solid State Ionics 154:37–43

    Article  Google Scholar 

  48. Lanfredi S, Saia PS, Lebullenger R, Hernandes AC (2002) Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics 146:329–339

    Article  CAS  Google Scholar 

  49. Ramya CS, Selvasekarapandian S, Hiran Kumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  50. Chiodelli G, Ferloni P, Magistris A, Sanesi M (1988) Ionic conduction and thermal properties of poly(ethylene oxide)-lithium tetrafluoroborate films. Solid State Ionics 28–30:1009–1013

    Article  Google Scholar 

  51. Wu X-L, Xin S, Seo H-H, Kim J, Guo Y-G, Lee J-S (2011) Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 186:1–6

    Article  CAS  Google Scholar 

  52. Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696

    Article  CAS  Google Scholar 

  53. Cho S, Cha W, Park HJ, Lee JM, Kim EB, Rhee HW, Jiangc Z, Strzalka J, Kim H (2013) Effects of siloxane nanoparticles on glass transition temperature and crystallization in PEO-LiPF6 polymer electrolytes. Synth Met 177:110–113

    Article  CAS  Google Scholar 

  54. Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125–132

    Article  CAS  Google Scholar 

  55. Shriver DF, Ratner MA (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (2011–0031570) and by the Korea Center for Artificial Photosynthesis (KCAP) located in Sogang University funded by the Minister of Science, ICT and Future Planning (MSIP) through the National Research Foundation of Korea (No. 2009–0093883) and also supported by the Human Resources Development program (No. 20114010203090) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Woo Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polu, A.R., Kim, D.K. & Rhee, HW. Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies. Ionics 21, 2771–2780 (2015). https://doi.org/10.1007/s11581-015-1474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1474-3

Keywords

Navigation