Skip to main content

Advertisement

Log in

TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

TiO2-reduced graphene oxide nanocomposite has been synthesized by a facile hydrothermal process. The structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The result shows that a unique nanocomposite has been obtained with the TiO2 nanoparticle homogenously dispersed onto the reduced graphene oxide sheets. The electrochemistry performance has been tested through cyclic voltammetry, constant current discharge/charge tests, and electrochemical impedance techniques. The initial lithium ion storage capacity is 368 mAhg−1 at the rate of 10 mAg−1, which exceeds the theoretical capacity value of the anatase TiO2 (335 mAhg−1). The nanocomposite exhibits good high-rate capacity of 136.1 mAhg−1 at rate of 1,000 mAg−1, and, after 100 cycles, the coulombic efficiency is still maintained as high as 98.6 %. The high specific capacity and good stability can be attributed to the unique structures and make the nanocomposite a promising substitute of the current commercial graphite anode in high-power, high-rate application of lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837

    Article  CAS  Google Scholar 

  4. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  5. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  6. Brousse T, Marchand R, Taberna PL, Simon P (2006) TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage. J Power Sources 158:571–577

    Article  CAS  Google Scholar 

  7. Wang K, Wei M, Morris MA, Zhou H, Holmes JD (2007) Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater 19:3016–3020

    Article  CAS  Google Scholar 

  8. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  CAS  Google Scholar 

  9. Cao H, Li B, Zhang J, Lian F, Kong X, Qu M (2012) Synthesis and superior anode performance of TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. J Mater Chem 22:9759–9766

    Article  CAS  Google Scholar 

  10. Cai D, Li D, Wang S, Zhu X, Yang W, Zhang S, Wang H (2013) High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries. J Alloys Compd 561:54–58

    Article  CAS  Google Scholar 

  11. Tao HC, Fan LZ, Yan X, Qu X (2012) In situ synthesis of TiO2-graphene nanosheets composites as anode materials for high-power lithium ion batteries. Electrochim Acta 69:328–333

    Article  CAS  Google Scholar 

  12. Zhang F, Cao H, Yue D, Zhang J, Qu M (2012) Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg Chem 51:9544–9551

    Article  CAS  Google Scholar 

  13. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S (2012) Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces 4:3636–3642

    Article  CAS  Google Scholar 

  14. Dong L, Li M, Zhao ML (2012) Hydrothermal synthesis of mixed crystal phases TiO2-reduced graphene oxide nanocomposites with small particle size for lithium ion batteries. Int J Hydrog Energy 14:3081–3087

    Google Scholar 

  15. Wang H, Robinson JT, Diankov G, Dai H (2013) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270–3271

    Article  Google Scholar 

  16. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Liu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914

    Article  CAS  Google Scholar 

  17. Chen X, Mao SS (2010) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  18. Zhu HY, Lan Y, Gao XP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 127:6730–6736

    Article  CAS  Google Scholar 

  19. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027

    Article  CAS  Google Scholar 

  20. Kavan L, Grätzel M, Gilbert SE, Klemenz C (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    Article  CAS  Google Scholar 

  21. Matranga C, Chen L, Smith M, Bittner E, Johnson JK, Bockrath B (2003) Trapped CO2 in carbon nanotube bundles. J Phys Chem B 107:12930–12941

    Article  CAS  Google Scholar 

  22. Shen J, Hu Y, Li C, Qin C, Shi M, Ye M (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25:6122–6128

    Article  CAS  Google Scholar 

  23. Yim WL, Johnson JK (2003) Ozone oxidation of single walled carbon nanotubes from density functional theory. J Phys Chem C 113:17636–17642

    Article  Google Scholar 

  24. Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359

    Article  CAS  Google Scholar 

  25. Jensen H, Soloviev A, Li Z, Sogaard EG (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl Surf Sci 246:239–249

    Article  CAS  Google Scholar 

  26. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  27. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  28. Huang ZD, Zhang HY, Chen YM, Wang WG, Chen Y, Zhong Y (2013) Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for super capacitor application. Electrochim Acta 108:421–428

    Article  CAS  Google Scholar 

  29. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  30. Subramanian V, Karki A, Gnanasekar KI, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2(anatase) for Li-ion batteries. J Power Sources 159:186–192

    Article  CAS  Google Scholar 

  31. Fu Y, Manthiram A (2012) Enhanced cyclability of lithium–sulfur batteries by a polymer acid-doped polypyrrole mixed ionic–electronic conductor. Chem Mater 24:3081–3087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51276044) by the National Science and Technology Support Project of China (No.2012BAK26B04) and by the Foundation of Key Scientific Researches by the Education Bureau of Guangdong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., He, C., Zhang, H. et al. TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries. Ionics 21, 51–58 (2015). https://doi.org/10.1007/s11581-014-1175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1175-3

Keywords

Navigation