Skip to main content
Log in

Electrodeposition of cobalt with tunable morphology from reverse micellar solution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrodeposition of cobalt on a copper electrode was successfully performed from aqueous and reverse micellar solutions of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), using constant potential electrolysis method. The potential to be applied for electrodeposition was judged from the cyclic voltammetric behavior of cobalt(II) in aqueous and reverse micellar solutions of CTAB at different compositions. The morphology, dimension, and crystallinity of cobalt deposited onto a copper substrate were evaluated from scanning electron microscopy (SEM) images and X-ray diffraction technique. The cobalt deposited on copper from aqueous solution does not show any definite shape and size, while the deposition from reverse micellar solutions occurred with definite shapes such as star-, flower-, and nanorod-like structures depending on the composition. The slow kinetics governed by the reverse micelles associated with the deposition brings about oriented growth of cobalt onto the copper substrate and offers the potential to electrochemically tune cobalt deposit with desirable morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu LP, Xiao HM, Zhang WD, Yang Y, Fu SY (2008) Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. Cryst Growth Des 8:1113–1118. doi:10.1021/cg701036k

    Article  CAS  Google Scholar 

  2. Lui X, Yi R, Wang Y, Qui G, Zhang N, Li X (2007) Highly ordered snowflakelike metallic cobalt microcrystals. J Phys Chem C 111:163–167. doi:10.1021/jp0643597

    Article  Google Scholar 

  3. Imre AR, Balazs L (2000) Fractal behavior of tree-like nickel and cobalt electrodeposits. Fractals 8:349–353. doi:10.1142/S0218348X00000445

    Article  CAS  Google Scholar 

  4. Ando M, Kobayashi T, Iijima S, Harita M (1997) Optical recognition of CO and H2 by use of gas-sensitiveAu–Co3O4 composite films. J Mater Chem 7:1779–1783. doi:10.1039/A700125H

    Article  CAS  Google Scholar 

  5. Yamaura H, Tamaki J, Moriya K, Miura N, Yamazoe N (1997) Highly selective CO sensor using indium oxide doubly promoted by cobalt oxide and gold. J Electrochem Soc 144:L158–L160. doi:10.1149/1.1837710

    Article  CAS  Google Scholar 

  6. Nkeng P, Koening J, Gautier J, Chartier P, Poillerat G (1996) Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. J Electroanal Chem 402:81–89. doi:10.1016/0022-0728(95)04254-7

    Article  Google Scholar 

  7. Weichel S, Møller PJ (1998) Annealing-induced microfaceting of the CoO(100) surface investigated by LEED and STM. Surf Sci 399:219–224. doi:10.1016/S0039-6028(97)00820-0

    Article  CAS  Google Scholar 

  8. Okamoto Y, Imanaka T, Teranishi S (1980) Surface structure of CoO-MoO3/Al2O3 catalysts studied by X-ray photoelectron spectroscopy. J Catal 65:448–460. doi:10.1016/0021-9517(80)90322-X

    Article  CAS  Google Scholar 

  9. Ramachandram K, Oriakhi CO, Lerner MM, Koch VR (1996) Intercalation chemistry of cobalt and nickel dioxides: a facile route to new compounds containing organocations. Mater Res Bull 31:767–772. doi:10.1016/0025-5408(96)00070-0

    Article  Google Scholar 

  10. Hutchins MG, Wright PJ, Grebenik PD (1987) Comparison of different forms of black cobalt selective solar absorber surfaces. Sol Energy Mater 16:113–131. doi:10.1016/0165-1633(87)90013-X

    Article  CAS  Google Scholar 

  11. Barrera E, Gonzales I, Viveros T (1998) A new cobalt oxide electrodeposit bath for solar absorbers. Sol Energy Mater Sol Cells 51:69–82. doi:10.1016/S0927-0248(97)00209-2

    Article  CAS  Google Scholar 

  12. Rivera M, Rios-Reyes CH, Medoza-Huizar LH (2008) Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG. Appl Surf Sci 255:1754–1758. doi:10.1016/j.apsusc.2008.06.016

    Article  CAS  Google Scholar 

  13. Soto AB, Arce EM, Polimar-Pardave M, Gonzalez I (1996) Electrochemical nucleation of cobalt onto glassy carbon electrode from ammonium chloride solutions. Electrochim Acta 41:2647–2655. doi:10.1016/0013-4686(96)00088-6

    Article  CAS  Google Scholar 

  14. Pradhan N, Singh P, Tripathy BC, Das SC (2001) Electrowinning of cobalt from acidic sulphate solutions—effect of chloride ion. Miner Eng 14:775–783. doi:10.1016/S0892-6875(01)00072-3

    Article  CAS  Google Scholar 

  15. Zhu Y, Yang Q, Yheng H, Yu W, Qian Y (2005) Flower-like cobalt nanocrystals by a complex precursor reaction route. Mater Chem Phys 91:293–297. doi:10.1016/j.matchemphys.2004.11.025

    Article  CAS  Google Scholar 

  16. Azizi A, Sahari A, Felloussia ML, Schmerber G, Miny C, Dinia A (2004) Growth and properties of electrodeposited cobalt films on Pt/Si(100) surface. Appl Surf Sci 228:320–325. doi:10.1016/j.apsusc.2004.01.026

    Article  CAS  Google Scholar 

  17. Cui CQ, Jiang SP, Tseung ACC (1990) Electrodeposition of cobalt from aqueous chloride solutions. J Electrochem Soc 137:3418–3423. doi:10.1149/1.2086232

    Article  CAS  Google Scholar 

  18. Nakahara S, Mahajan S (1980) The influence of solution pH on microstructure of electrodeposited cobalt. J Electrochem Soc 127:283–288. doi:10.1149/1.2129656

    Article  CAS  Google Scholar 

  19. Jeffrey MI, Choo WL, Breuer PL (2000) The effect of additives and impurities on the cobalt electrowinning process. Miner Eng 13:1231–1241. doi:10.1016/S0892-6875(00)00107-2

    Article  CAS  Google Scholar 

  20. Tripathy BC, Singh P, Muir DM (2001) Effect of manganese(II) and boric acid on the electrowinning of cobalt from acidic sulfate solutions. Metall Trans B 32:395–399. doi:10.1007/s11663-001-0023-9

    Article  Google Scholar 

  21. Jovic VD, Jovic BM, Pavlovic MG, Maksimovic V (2006) Morphology and composition of Ni–Co alloy powders electrodeposited from ammoniacal electrolyte. J Solid State Electrochem 10:959–966. doi:10.1007/s10008-005-0047-1

    Article  CAS  Google Scholar 

  22. Jovic VD, Jovic BM, Pavlovic MG (2006) Electrodeposition of Ni, Co and Ni–Co alloy powders. Electrochim Acta 51:5468–5477. doi:10.1016/j.electacta.2006.02.022

    Article  CAS  Google Scholar 

  23. Jovic VD, Jovic BM, Maksimovic V, Pavlovic MG (2007) Electrodeposition and morphology of Ni, Co and Ni–Co alloy powders: part II. Ammonium chloride supporting electrolyte. Electrochim Acta 52:4254–4263. doi:10.1016/j.electacta.2006.12.003

    Article  CAS  Google Scholar 

  24. El-Hallag IS (2009) Electrochemical and SEM properties of Co2+ ion in hexagonal mesophase of pluronic lyotropic liquid crystal template. Bull Mater Sci 32:555–560. doi:10.1007/s12034-009-0083-z

    Article  CAS  Google Scholar 

  25. Al-Bishri HM, El-Hallag IS, El-Mossalamy EH (2010) Preparation and characterization of ordered nanostructured cobalt films via lyotropic liquid crystal templated electrodeposition method. Bull Korean Chem Soc 31:3730–3734. doi:10.5012/bkcs.2010.31.12.3730

    Article  CAS  Google Scholar 

  26. Sultana S, Saha S, Islam MM, Rahman MM, Mollah MYA, Susan MABH (2013) Electrodeposition of nickel from reverse micellar solutions of cetyltrimethylammonium bromide. J Electrochem Soc 160:D524–D529. doi:10.1149/2.039311jes

    Article  CAS  Google Scholar 

  27. Susan MABH, Saha S, Ahmed S, Begum F, Rahman MM, Mollah MYA (2012) Electrodeposition of cobalt from a hydrophilic ionic liquid at ambient condition. Mater Res Innov 16:345–349. doi:10.1179/1433075X11Y.0000000070

    Article  CAS  Google Scholar 

  28. Soropogui K, Sigaud M, Vittori O (2007) A cobalt film electrode for nitride determination in natural water. Electroanalysis 19:2559–2564. doi:10.1002/elan.200704008

    Article  CAS  Google Scholar 

  29. Grujicic D, Pesic B (2004) Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochim Acta 49:4719–4732. doi:10.1016/j.electacta.2004.05.028

    Article  CAS  Google Scholar 

  30. Narasimham KC, Vasundara S, Udupa HV (1975) Consumption of cetyltrimethylammonium bromide (CTAB) during electrodeposition of lead dioxide. Can J Chem 53:3327–3329. doi:10.1139/v75-475

    Article  CAS  Google Scholar 

  31. Keya JJ, Islam MM, Rahman, MM, Mollah MYA, Susan MABH (2014) Effect of a water structure modifier on the aqueous electrochemistry of supramolecular systems: redox-active versus conventional surfactants. J Electroanal Chem 712:161–166. doi:10.1016/j.jelechem.2013.11.019

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for a sub-project (CP-231) from the Higher Education Quality Enhancement Project (HEQEP) of the University Grants Commission of Bangladesh financed by the World Bank and the Government of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abu Bin Hasan Susan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Sultana, S., Islam, M.M. et al. Electrodeposition of cobalt with tunable morphology from reverse micellar solution. Ionics 20, 1175–1181 (2014). https://doi.org/10.1007/s11581-014-1069-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1069-4

Keywords

Navigation