Skip to main content

Advertisement

Log in

Electrodeposition of iron phosphide on copper substrate as conversion negative electrode for lithium-ion battery application

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An attempt is made to synthesize high temperature iron phosphide phase over copper substrate at room temperature via simple and cost-effective electrodeposition technique using aqueous acidic electrolyte. The phosphorus content in alloys varied with its source's composition in the electrolyte. All as-obtained deposits are annealed at 400 °C for 3 h under constant inert gas flow rate in a tubular furnace. X-ray diffraction and scanning electron microscope are used to characterize phase composition and morphology, respectively. All samples are electrochemically tested as anode material against lithium between 0.01 and 2.5 V at constant 10 μAcm−2, rendering it as possible negative electrode for high energy density lithium-ion battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Tripathi AM, Chandrasekar MS, Mitra S (2011) Green energy storage materials: advanced nanostructured materials for lithium-ion batteries, Proc. SPIE, Energy Harvesting and Storage: Materials, Devices, and Applications II, 8035: 803507 (12)

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Google Scholar 

  4. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192

    Article  CAS  Google Scholar 

  5. Boyanov S, Annou K, Villevielle C, Pelosi M, Zitoun D, Monconduit L (2008) Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries. Ionics 14:183–190

    Article  CAS  Google Scholar 

  6. Bichat MP, Monconduit L, Pascal JL, Favier F (2005) Anode materials for lithium ion batteries in the Li-Zn-P system. Ionics 11:66–75

    Google Scholar 

  7. Mauvernay B, Bichat MP, Favier F, Monconduit L, Morcrette M, Doublet ML (2005) Progress in the lithium insertion mechanism in Cu3P. Ionics 11:36–45

    Google Scholar 

  8. Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG (2009) Conversion reactions: a new pathway to realize energy in lithium-ion battery - review. Ionics 15:301–307

    Google Scholar 

  9. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML (2006) FeP: another attractive anode for the li-ion battery enlisting a reversible two-step insertion/conversion process. Chem Mater 18:3531–3538

    Article  CAS  Google Scholar 

  10. Pfeiffer H, Tancret F, Bichat MP, Monconduit L, Favier F, Brousse T (2004) Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries. Electrochem Commun 6:263–267

    Article  CAS  Google Scholar 

  11. Chandrasekar MS, Mitra S (2013) Thin copper phosphide films as conversion anode for lithium-ion battery applications. Electrochim Acta 92:47–54

    Article  CAS  Google Scholar 

  12. Trizio LD, Figuerola A, Manna L, Genovese A, George C, Brescia R, Saghi Z, Simonutti R, Huis MV, Falqui A (2012) Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu–Cu3P nanocrystals. ACS Nano 6:32–41

    Article  Google Scholar 

  13. Hall JW, Membreno N, Wu J, Celio H, Jones RA, Stevenson KJ (2012) Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries. J Am Chem Soc 134:5532–5535

    Article  CAS  Google Scholar 

  14. Schlesinger ME (2002) The thermodynamic properties of phosphorus and solid binary phosphides. Chem Rev 102:4267–4301

    Article  CAS  Google Scholar 

  15. Yang Z, Liu L, Wang X, Yang S, Su X (2011) Stability and electronic structure of the Co–P compounds from first-principle calculations. J Alloys Compd 509:165–171

    Article  CAS  Google Scholar 

  16. St V, Kjuchukova M, Raichevski G (1988) Electrochemical preparation of amorphous Fe-P alloys. J Appl Electrochem 18:673–678

    Article  Google Scholar 

  17. Kamei K, Maehara Y (1996) Magnetic properties and microstructure of electrodeposited Fe−P amorphous alloy. J Appl Electrochem 26:529–535

    Article  CAS  Google Scholar 

  18. Zecevic SK, Zotovic JB, Gojkovic SL, Radmilovic V (1998) Electrochemically deposited thin films of amorphous Fe–P alloy: Part I. Chemical composition and phase structure characterization. J Electroanal Chem 448:245–252

    Article  CAS  Google Scholar 

  19. Mikó A, Hempelmann R, Lakatos-Varsányi M, Kálmán E (2006) Iron-phosphorous layers deposited by pulse electrochemical technique. Electrochem Solid-State Lett 9:C126–C130

    Article  Google Scholar 

  20. Boyanov S, Womes M, Jumas JC, Monconduit L (2008) 57Fe Mössbauer study of the electrochemical reaction of Li with FePy (y = 1,2). Hyperfine Interact 187:57–69

    Article  CAS  Google Scholar 

  21. Boyanov S, Womes M, Monconduit L, Zitoun D (2009) Mossbauer spectroscopy and magnetic measurements as complementary techniques for the phase analysis of FeP electrodes cycling in Li-ion batteries. Chem Mater 21:3684–3692

    Article  CAS  Google Scholar 

  22. Silva DCC, Crosnier O, Ouvrard G, Greedan J, Safa-Sefat A, Nazar LF (2003) Reversible lithium uptake by FeP2. Electrochem Solid-State Lett 6:A162–A165

    Article  CAS  Google Scholar 

  23. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating—conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology-Nano Mission, New Delhi, for the financial support to carry out this research work. Also, we express our thanks to SAIF-IITB, XRD at the Department of Physics, IITB and Research Scholars for providing adequate instruments facilities in meeting the material's characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekar M.S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

M.S., C., Mitra, S. Electrodeposition of iron phosphide on copper substrate as conversion negative electrode for lithium-ion battery application. Ionics 20, 137–140 (2014). https://doi.org/10.1007/s11581-013-1021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1021-z

Keywords

Navigation