Skip to main content

Advertisement

Log in

Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models

  • Review Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We briefly review spatially homogeneous mechanistic mathematical models describing the interactions between a malignant tumor and the immune system. We begin with the simplest (single equation) models for tumor growth and proceed to consider greater immunological detail (and correspondingly more equations) in steps. This approach allows us to clarify the necessity for expanding the complexity of models in order to capture the biological mechanisms we wish to understand. We conclude by discussing some unsolved problems in the mathematical modeling of cancer-immune system interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, J., Bellomo, N., 1997. A Survey of Models for Tumor-Immune System Dynamics. Birkhäuser, Basel.

    MATH  Google Scholar 

  • Alarcon, T., Byrne, H., Maini, P., 2003. A cellular automaton model for tumor growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274.

    Article  MathSciNet  Google Scholar 

  • Araujo, R., McElwain, D., 2004. A history of the study of solid tumor growth: the contribution of mathematical modeling. Bull. Math. Biol. 66, 1039–1091.

    Article  MathSciNet  Google Scholar 

  • Arciero, J., Jackson, T., Kirschner, D., 2004. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete Contin. Dyn. Syst., Ser. B 4(1), 39–58.

    MATH  MathSciNet  Google Scholar 

  • Bajzer, Z., Maruĉić, M., Vuk-Pavlović, S., 1996. Conceptual frameworks for mathematical modeling of tumor growth dynamics. Math. Comput. Model. 23(6), 31–46.

    Article  MATH  Google Scholar 

  • Banerjee, S., Sarkar, R., 2008. Delay-induced model for tumor-immune interaction and control of malignant tumor growth. BioSystems 91, 268–288.

    Article  Google Scholar 

  • Bellomo, N., Delitala, M., 2008. From the mathematical kinetic, and stochastic game theory to modeling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev. 5, 183–206.

    Article  Google Scholar 

  • Bellomo, N., Preziosi, L., 2000. Modelling and mathematical problems related to tumor evolution and its interactions with the immune system. Math. Comput. Model. 32, 413–452.

    Article  MATH  MathSciNet  Google Scholar 

  • Bellomo, N., Li, N., Maini, P., 2008. On the foundations of cancer modeling: selected topics, speculations, and perspectives. Math. Mod. Methods Appl. Sci. 18(4), 593–646.

    Article  MATH  MathSciNet  Google Scholar 

  • Bennett, S., Carbone, F., Karamalis, F., Miller, J., Heath, W.R., 1997. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186(1), 65–70.

    Article  Google Scholar 

  • Berner, V., Liu, H., Zhou, Q., Alderson, K.L., Sun, K., Weiss, J.M., Back, T.C., Longo, D.L., Blazar, B.R., Wiltrout, R.H., Welniak, L.A., Redelman, D., Murphy, W.J., 2007. IFN-γ mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat. Med. 13, 354–360.

    Article  Google Scholar 

  • Boon, T., van der Bruggen, P., 1996. Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725–729.

    Article  Google Scholar 

  • Bose, T., Trimper, S., 2009. Stochastic model for tumor growth with immunization. Phys. Rev. E 79, 5.

    MathSciNet  Google Scholar 

  • Bunimovich-Mendrazitsky, S., Shochat, E., Stone, L., 2007. Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull. Math. Biol. 69, 1847–1870.

    Article  MATH  MathSciNet  Google Scholar 

  • Burger, P., Vogel, F., Green, S., Strike, T., 1985. Glioblastoma multiforme and anaplastic astrocytoma, pathologic criteria and prognosis implications. Cancer 56, 1106–1111.

    Article  Google Scholar 

  • Burnet, F., 1957. Cancer: a biological approach. Br. Med. J. 1, 779–786.

    Article  Google Scholar 

  • Burnet, F., 1967. Immunological aspects of malignant disease. Lancet 1, 1171–1174.

    Article  Google Scholar 

  • Byrne, H., Cox, S., Kelly, C., 2004. Macrophage-tumor interactions: in vivo dynamics. Discrete Contin. Dyn. Syst., Ser. B 4(1), 81–98.

    MATH  MathSciNet  Google Scholar 

  • Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P., 2006. Modeling aspects of cancer dynamics: a review. Philos. Trans. R. Soc. A 364, 1563–1578.

    Article  MathSciNet  Google Scholar 

  • Cappuccio, A., Elishmereni, M., Agur, Z., 2006. Cancer immunotherapy by Interleukin-21: potential treatment strategies evaluated in a mathematical model. Cancer Res. 66(14), 7293–7300.

    Article  Google Scholar 

  • Castiglione, F., Piccoli, B., 2007. Cancer immunotherapy, mathematical modeling and optimal control. J. Theor. Biol. 247, 723–732.

    Article  MathSciNet  Google Scholar 

  • Castro, M., Klamt, F., Grieneisen, V., Grivicich, I., Moreira, J., 2003. Gompertzian growth pattern correlated with phenotypic organization of colon carcinoma, malignant glioma and non-small cell lung carcinoma cell lines. Cell Proliferation 36, 65–73.

    Article  Google Scholar 

  • Chaplain, M., 2008. Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation. In: Multiscale Problems in the Life Sciences. Lecture Notes in Mathematics, vol. 1940, pp. 147–200. Springer, Berlin

    Chapter  Google Scholar 

  • Chatterjee, A., Mayawala, K., Edwards, J., Vlachos, D., 2005. Time accelerated Monte Carlo simulations of biological networks using the binomial τ-leap method. Bioinformatics 21(9), 2136–2137.

    Article  Google Scholar 

  • Chignola, R., Foroni, R., 2005. Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology. IEEE Trans. Biomed. Eng. 52(5), 808–815.

    Article  Google Scholar 

  • de Boer, R., Hogeweg, P., Dullens, H., de Weger, R., den Otter, W., 1985. Macrophage T lymphocyte interactions in the anti-tumor immune response: a mathematical model. J. Immunol. 134(4), 2748–2758.

    Google Scholar 

  • de Pillis, L., Radunskaya, A., 2001. A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Comput. Math. Methods Med. 3(2), 78–100.

    Google Scholar 

  • de Pillis, L., Radunskaya, A., 2003a. The dynamics of an optimally controlled tumor model: a case study. Math. Comput. Model. 37, 1221–1244.

    Article  MATH  Google Scholar 

  • de Pillis, L., Radunskaya, A., 2003b. A mathematical model of immune response to tumor invasion. In: Computational Fluid and Solid Mechanics. Proceedings of the Second M.I.T. Conference on Computational Fluid Dynamics and Solid Mechanics, pp. 1661–1668.

  • de Pillis, L., Radunskaya, A., Wiseman, C., 2005. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958.

    Google Scholar 

  • de Vladar, H., González, J., 2004. Dynamic response of cancer under the influence of immunological activity and therapy. J. Theor. Biol. 227, 335–348.

    Article  Google Scholar 

  • di Carlo, E., de Totero, D., Piazza, T., Fabbi, M., Ferrini, S., 2007. Role of IL-21 in immune-regulation and tumor immunotherapy. Cancer Immunol. Immunother. 56, 1323–1334.

    Article  Google Scholar 

  • Diefenbach, A., Jensen, E., Jamieson, A., Raulet, D., 2001. Rael and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature 413, 165–171.

    Article  Google Scholar 

  • d’Onofrio, A., 2005. A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 220–235.

    MATH  MathSciNet  Google Scholar 

  • d’Onofrio, A., 2008. Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47, 614–637.

    Article  MATH  MathSciNet  Google Scholar 

  • Dranoff, G., 2004. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22.

    Article  Google Scholar 

  • Dullens, H., Tol, M.V.D., de Weger, R., Otter, W.D., 1986. A survey of some formal models in tumor immunology. Cancer Immunol. Immunother. 23, 159–164.

    Google Scholar 

  • Fidler, I., 1985. Macrophages and metastasis: a biological approach to cancer therapy: presidential address. Cancer Res. 45, 4714–4726.

    Google Scholar 

  • Forys, U., Waniewski, J., Zhivkov, P., 2006. Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy. J. Biol. Syst. 14(1), 13–30.

    Article  MATH  Google Scholar 

  • Gajewski, T., 2007. Failure at the effector phase: immune barriers at the level of melanoma tumor microenvironment. Clin. Cancer Res. 13(18), 5256–5261.

    Article  Google Scholar 

  • Galach, M., 2003. Dynamics of the tumor-immune system competition: the effect of time delay. Int. J. Appl. Math. Comput. Sci. 13(3), 395–406.

    MATH  MathSciNet  Google Scholar 

  • Gerlee, P., Anderson, A., 2009. Evolution of cell motility in an individual-based model of tumor growth. J. Theor. Biol. 259(1), 67–83.

    Article  Google Scholar 

  • Gillespie, D., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434.

    Article  MathSciNet  Google Scholar 

  • Goldstein, B., Faeder, J., Hlavacek, W., 2004. Mathematical and computational models of immune-receptor signaling. Nat. Rev. Immunol. 4(6), 445–456.

    Article  Google Scholar 

  • Gompertz, B., 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583.

    Article  Google Scholar 

  • Greenblatt, M., Bennett, W., Hollstein, M., Harris, C., 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    Google Scholar 

  • Hamilton, D., Bretscher, P., 2008. The commonality in the regulation of the immune response to most tumors: the prevalence of immune class deviation as a tumor escape mechanism and its significance for vaccination and immunotherapy. Cancer Ther. 6, 745–754.

    Google Scholar 

  • Hart, D., Shochat, E., Agur, Z., 1998. The growth law of primary breast cancer as inferred from mammography screening trials data. Br. J. Cancer 78, 382–387.

    Article  Google Scholar 

  • Horny, H.-P., Horst, H.-A., 1986. Lymphoreticular infiltrates in invasive ductal breast cancer. Virchows Arch. 409, 275–286.

    Article  Google Scholar 

  • Kammertoens, T., Schüler, T., Blankenstein, T., 2005. Immunotherapy: target the stroma to hit the tumor. Trends Mol. Med. 11(5), 225–231.

    Article  Google Scholar 

  • Khar, A., 1997. Mechanisms involved in natural killer cell mediated target cell death leading to spontaneous tumor regression. J. Biosci. 22, 23–31.

    Article  Google Scholar 

  • Kim-Schulze, S., Taback, B., Kaufman, H., 2007. Cytokine therapy for cancer. Surg. Oncol. Clin. N. Am. 16(4), 793–818.

    Article  Google Scholar 

  • Kirk, D., 2004. Optimal Control Theory: An Introduction. Dover, New York.

    Google Scholar 

  • Kirschner, D., Panetta, J., 1998. Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252.

    Article  MATH  Google Scholar 

  • Knudson, A., 1971. Mutations and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. 68(4), 820–823.

    Article  Google Scholar 

  • Kronik, N., Kogan, Y., Vainstein, V., Agur, Z., 2008. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57, 425–439.

    Article  Google Scholar 

  • Kruse, C., Cepeda, L., Owens, B., Johnson, S., Stears, J., Lillehei, K., 1997. Treatment of recurrent glioma with intracavity alloreactive cytotoxic T lymphocytes and Interleukin-2. Cancer Immunol. Immunother. 45, 77–87.

    Article  Google Scholar 

  • Kurtz, T., 1971. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8(2), 344–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuznetsov, Y., 1994. Elements of Applied Bifurcation Theory. Springer, London.

    Google Scholar 

  • Kuznetsov, V., Makalkin, I., Taylor, M., Perelson, A., 1994. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 2(56), 295–321.

    Google Scholar 

  • Laird, A., 1964. Dynamics of tumor growth. Br. J. Cancer 18, 490–502.

    Article  Google Scholar 

  • Lala, P., Patt, H., 1966. Cytokinetic analysis of tumor growth. Proc. Natl. Acad. Sci. 56, 1735–1742.

    Article  Google Scholar 

  • Ledzewicz, U., Munden, J., Schättler, H., 2009. Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete Contin. Dyn. Syst. Ser. B 12(2), 415–438.

    Article  MATH  MathSciNet  Google Scholar 

  • Leek, R., Harris, A., 2002. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasi 7(2), 177–189.

    Article  Google Scholar 

  • Lejeune, O., Chaplain, M., Akili, I.E., 2008. Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumors. Math. Comput. Model. 47, 649–662.

    Article  MATH  Google Scholar 

  • Lin, A., 2004. A model of tumor and lymphocyte interactions. Discrete Contin. Dyn. Syst. Ser. B 4(1), 241–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Lollini, P., Motta, S., Pappalardo, F., 2006a. Discovery of cancer vaccination protocols with a genetic algorithm driving and agent based simulator. BMC Bioinform. 7, 352.

    Article  Google Scholar 

  • Lollini, P., Motta, S., Pappalardo, F., 2006b. Modeling tumor immunology. Math. Mod. Methods Appl. Sci. 16(7S), 1091–1124.

    Article  MATH  MathSciNet  Google Scholar 

  • Malet, D., de Pillis, L., 2006. A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350.

    Article  Google Scholar 

  • Mansury, Y., Diesboeck, T., 2003. The impact of “search precision” in an agent-based tumor model. J. Theor. Biol. 224, 325–337.

    Article  Google Scholar 

  • Mansury, Y., Diggory, M., Deisboeck, T., 2006. Evolutionary game theory in an agent-based brain tumor model: exploring the ‘Genotype-Phenotype’ link. J. Theor. Biol. 238, 146–156.

    Article  MathSciNet  Google Scholar 

  • Mantovani, A., Sozzani, S., Locati, M., Allavena, P., Sica, A., 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. TRENDS Immunol. 23(11), 549–555.

    Article  Google Scholar 

  • Martins, M., Ferreira, S.C. Jr., Vilela, M., 2007. Multiscale models for the growth of avascular tumors. Phys. Life Rev. 4, 128–156.

    Article  Google Scholar 

  • Matkowski, B., 1970. Nonlinear dynamics stability. SIAM J. Appl. Math. 18, 872–883.

    Article  MathSciNet  Google Scholar 

  • Mattes, J., Hulett, M., Xie, W., Hogan, S., Rothenberg, M., Foster, P., Parish, C., 2003. Immunotherapy of cytotoxic T cell-resistant tumor by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197(3), 387–393.

    Article  Google Scholar 

  • Matzavinos, A., Chaplain, M., Kuznetsov, V., 2004. Mathematical modeling of the spatiotemporal response of cytotoxic T-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34.

    Article  MATH  Google Scholar 

  • Menta, B., Agarwal, M., 1980. Cyclic oscillations in leukocyte count in chronic myeloid leukemia. Acta Haematol. 63, 68–70.

    Article  Google Scholar 

  • Merola, A., Cosentino, C., Amato, F., 2008. An insight into tumor dormancy equilibrium via the analysis of its domain of attraction. Biomed. Sign. Process. Control 3, 212–219.

    Article  Google Scholar 

  • Michelson, S., Leith, J., 1993. Growth factors and growth control of heterogeneous populations. Bull. Math. Biol. 55, 993–1011.

    MATH  Google Scholar 

  • Michelson, S., Miller, B., Glicksman, A., Leith, J., 1987. Tumor micro-ecology and competitive interactions. J. Theor. Biol. 128, 233–246.

    Article  MathSciNet  Google Scholar 

  • Moore, H., Li, N., 2004. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227, 513–523.

    Article  MathSciNet  Google Scholar 

  • Mueller, M., Fusenig, N., 2004. Friends or foes—bipolar effects of the tumor stroma in cancer. Nat. Rev. 4, 839–849.

    Google Scholar 

  • Nagy, J., 2005. The ecology and evolutionary biology of cancer: a review of mathematical models of necrosis and tumor cells diversity. Math. Biosci. Eng. 2(2), 381–418.

    MathSciNet  Google Scholar 

  • Naito, Y., Saito, K., Shiiba, K., Ohuchi, A., Saigenji, K., Nagura, H., Ohtani, H., 1998. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cells. Cancer Res. 58, 3491–3494.

    Google Scholar 

  • Nani, F., Freedman, H., 2000. A mathematical model of cancer treatment by immunotherapy. Math. Biosci. 163, 159–199.

    Article  MATH  MathSciNet  Google Scholar 

  • Norton, L., 1988. A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071.

    Google Scholar 

  • Nowak, M., Komarova, N., Sengupta, A., Jallepalli, P., Shih, I., Vogelstein, B., Lengauer, C., 2002. The role of chromosomal instability in tumor initiation. Proc. Natl. Acad. Sci. 99(25), 16226–16231.

    Article  Google Scholar 

  • Orucevic, A., Lala, P., 1998. Role of nitric oxide in IL-2 therapy-induced capillary leak syndrome. Cancer Metastasis Rev. 17(1), 127–142.

    Article  Google Scholar 

  • Owen, M., Sherratt, J., 1998. Modeling the macrophage invasion of tumors: effects on growth and composition. Math. Med. Biol. 15, 165–185.

    Article  MATH  Google Scholar 

  • Owen, M., Byrne, H., Lewis, C., 2004. Mathematical modeling of the use of macrophages as vehicles for drug delivery to hypoxic tumor sites. J. Theor. Biol. 226, 377–391.

    Article  MathSciNet  Google Scholar 

  • Page, K., Uhr, J., 2005. Mathematical models of cancer dormancy. Leuk. Lymphoma 46, 313–327.

    Article  Google Scholar 

  • Panetta, J., 1998. A mathematical model of drug resistance: heterogeneous tumors. Math. Biosci. 147, 41–61.

    Article  MATH  Google Scholar 

  • Pappalardo, F., Lollini, P.-L., Castiglione, F., Motta, S., 2005. Modelling and simulation of cancer immunoprevention vaccine. Bioinformatics 21, 2891.

    Article  Google Scholar 

  • Pappalardo, F., Motta, S., Lollini, P.-L., Mastriani, E., 2006. Analysis of vaccine’s schedule using models. Cell. Immunol. 244, 137–140.

    Article  Google Scholar 

  • Parish, C., 2003. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81, 106–113.

    Article  Google Scholar 

  • Parmiani, G., Rivoltini, L., Andreola, G., Carrabba, M., 2000. Cytokines in cancer therapy. Immunol. Lett. 74(1), 41–44.

    Article  Google Scholar 

  • Perez-Diez, A., Joncker, N., Choi, K., Chan, W., Anderson, C., Lantz, O., Matzinger, P., 2007. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354.

    Article  Google Scholar 

  • Perko, L., 2001. Differential Equations and Dynamical Systems. Springer, Berlin.

    MATH  Google Scholar 

  • Quesnel, B., 2008. Dormant tumor cells as therapeutic target? Cancer Lett. 267, 10–17.

    Article  Google Scholar 

  • Roose, T., Chapman, S., Maini, P., 2007. Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenberg, S., 1991. Immunotherapy and gene therapy of cancer. Cancer Res. 51, 5074s–5079s.

    Google Scholar 

  • Rosenberg, S., Yang, J., Restifo, N., 2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915.

    Article  Google Scholar 

  • Sachs, R., Hlatky, L., Hahnfeldt, P., 2001. Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math. Comput. Model. 33, 1297–1305.

    Article  MATH  MathSciNet  Google Scholar 

  • Samad, H.E., Khammash, M., Petzold, L., Gillespie, D., 2005. Stochastic modeling of gene regulatory networks. Int. J. Robust Nonlinear Control 15, 691–711.

    Article  MATH  Google Scholar 

  • Sarkar, R., Banerjee, S., 2005. Cancer self remission and tumor stability—a stochastic approach. Math. Biosci. 196, 65–81.

    Article  MATH  MathSciNet  Google Scholar 

  • Skipper, H., Schabel, F.H. Jr., 1982. Quantitative and cytokinetic studies in experimental tumor systems. In: Holland, J., Frey E. III (Eds.), Cancer Medicine, 2nd edn., pp. 636–648.

  • Smyth, M., Godfrey, D., Trapani, J., 2001. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2, 293–299.

    Article  Google Scholar 

  • Sotolongo-Costa, O., Molina, L.M., Perez, D.R., Antoraz, J., Reyes, M.C., 2003. Behavior of tumors under nonstationary therapy. Physica D 178, 242–253.

    MATH  MathSciNet  Google Scholar 

  • Spratt, J., Meyer, J., Spratt, J., 1996. Rates of growth of human neoplasms: part ii. J. Surg. Oncol. 61, 68–83.

    Article  Google Scholar 

  • Stepanova, N., 1980. Course of the immune reaction during the development of a malignant tumor. Biophysics 24, 917–923.

    Google Scholar 

  • Stuart, J., 1960. On the nonlinear mechanism of wave disturbances in stable and unsable parallel flows. Part I.. J. Fluid Mech. 9, 353–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Swan, G., 1985. Optimal control applications in the chemotherapy of multiple myeloma. IMA J. Math. Appl. Med. Biol. 2(3), 139–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Szymanska, Z., 2003. Analysis of immunotherapy models in the context of cancer dynamics. Int. J. Appl. Math. Comput. Sci. 13, 407–418.

    MATH  MathSciNet  Google Scholar 

  • Takayanagi, T., Ohuchi, A., 2001. A mathematical analysis of the interactions between immunogenic tumor cells and cytotoxic T lymphocytes. Microbiol. Immunol. 45(10), 709–715.

    Google Scholar 

  • Teng, M., Swann, J., Koebel, C., Schreiber, R., Smyth, M., 2008. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 84, 988–993.

    Article  Google Scholar 

  • Thorne, B., Bailey, A., Peirce, S., 2007. Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief. Bioinform. 8(4), 245–257.

    Article  Google Scholar 

  • Villasana, M., Radunskaya, A., 2003. A delay differential equation model for tumor growth. J. Math. Biol. 47, 270–294.

    Article  MATH  MathSciNet  Google Scholar 

  • von Bertalanffy, L., 1957. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231.

    Article  Google Scholar 

  • von Stebut, E., Metz, M., Milon, G., Knop, J., Maurer, M., 2003. Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1α/β released from neutrophils recruited by mast cell-derived TNF-α. Blood 101, 210–215.

    Article  Google Scholar 

  • Waldhauer, I., Steinle, A., 2008. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943.

    Article  Google Scholar 

  • Wang, S., Hinow, P., Bryce, N., Weaver, A., Estrada, L., Artega, C., Webb, G., 2009. A mathematical model quantifies proliferation and motility effects of TGF-β on cancer cells. Comput. Math. Methods Med. 10(1), 71–83.

    Article  MathSciNet  Google Scholar 

  • Webb, S., Owen, M., Byrne, H.M., Murdoch, C., Lewis, C., 2007. Macrophage-based anti-cancer therapy: modeling different modes of tumour targeting. Bull. Math. Biol. 69(5), 1747–1776.

    Article  MATH  MathSciNet  Google Scholar 

  • Weedon-Fekjaer, H., Lindqvist, B., Vatten, L., Aalen, O., Tretli, S., 2008. Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 10, R41.

    Article  Google Scholar 

  • Weldon, T., 1988. Mathematical Models in Cancer Research. Hilger, Bristol.

    Google Scholar 

  • Zhang, S., Bernard, D., Khan, W., Kaplan, M., Bramson, J., Wan, Y., 2009. CD4+ T-cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via the STAT4/STAT6 signaling axis. Eur. J. Immunol. 39, 1252–1259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca Eftimie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eftimie, R., Bramson, J.L. & Earn, D.J.D. Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models. Bull. Math. Biol. 73, 2–32 (2011). https://doi.org/10.1007/s11538-010-9526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9526-3

Keywords

Navigation