Skip to main content
Log in

Effect of Changes in Skeletal Muscle Mass on Oncological Outcomes During First-Line Sunitinib Therapy for Metastatic Renal Cell Carcinoma

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Sarcopenia is a state of degenerative skeletal muscle wasting induced by cancer cachexia.

Objective

To evaluate the prognostic impact of changes in skeletal muscle mass (SMM) during first-line sunitinib therapy on oncological outcomes in metastatic renal cell carcinoma (mRCC).

Patients and Methods

Sixty-nine patients were evaluated retrospectively. The skeletal muscle index (SMI) was calculated based on computed tomography images obtained before the initiation (pre-treatment SMI) and after two cycles of sunitinib treatment (post-treatment SMI). The change in SMM was evaluated based on the value of ΔSMI, which was calculated as [(posttreatment SMI – pretreatment SMI)/ pretreatment SMI] × 100. Oncological outcomes were compared between patients with ΔSMI <0 (SMM decrease) and ΔSMI ≥0 (SMM maintenance).

Results

A decrease in SMM was observed in 38 patients (55.1%). Progression-free survival (PFS) and overall survival (OS) after sunitinib therapy initiation were significantly shorter in patients with ΔSMI <0 than in those with ΔSMI ≥0 (median PFS: 9.53 vs. 28.4 months, p < 0.0001; OS: 19.8 vs. 52.6 months, p = 0.0001). ΔSMI was an independent predictive factor for PFS (HR 3.25, 95% CI 1.74–6.29, p = 0.0002) and OS (HR 4.53, 95% CI 2.15–10.5, p < 0.0001). The objective response rate was significantly lower in patients with ΔSMI <0 than in those with ΔSMI ≥0 (23.7% vs. 51.6%, p = 0.0164).

Conclusion

Decreased SMM during first-line sunitinib therapy can be an effective marker of outcome prediction for mRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.

    Article  PubMed  Google Scholar 

  2. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.

    Article  PubMed  Google Scholar 

  3. Simonsen C, de Heer P, Bjerre ED, Suetta C, Hojman P, Pedersen BK, et al. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology: a meta-analysis. Ann Surg. 2018;268(1):58–69.

    Article  PubMed  Google Scholar 

  4. Hiraoka A, Otsuka Y, Kawasaki H, Izumoto H, Ueki H, Kitahata S, et al. Impact of muscle volume and muscle function decline in patients undergoing surgical resection for hepatocellular carcinoma. J Gastroenterol Hepatol. 2018;33(6):1271–6.

    Article  PubMed  Google Scholar 

  5. Miyamoto Y, Baba Y, Sakamoto Y, Ohuchi M, Tokunaga R, Kurashige J, et al. Sarcopenia is a negative prognostic factor after curative resection of colorectal cancer. Ann Surg Oncol. 2015;22(8):2663–8.

    Article  PubMed  Google Scholar 

  6. Takamori S, Toyokawa G, Okamoto T, Shimokawa M, Kinoshita F, Kozuma Y, et al. Clinical impact and risk factors for skeletal muscle loss after complete resection of early non-small cell lung cancer. Ann Surg Oncol. 2018;25(5):1229–36.

    Article  PubMed  Google Scholar 

  7. Tsukioka T, Nishiyama N, Izumi N, Mizuguchi S, Komatsu H, Okada S, et al. Sarcopenia is a novel poor prognostic factor in male patients with pathological stage I non-small cell lung cancer. Jpn J Clin Oncol. 2017;47(4):363–8.

    Article  PubMed  Google Scholar 

  8. Psutka SP, Carrasco A, Schmit GD, Moynagh MR, Boorjian SA, Frank I, et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer. 2014;120(18):2910–8.

    Article  PubMed  Google Scholar 

  9. Mayr R, Gierth M, Zeman F, Reiffen M, Seeger P, Wezel F, et al. Sarcopenia as a comorbidity-independent predictor of survival following radical cystectomy for bladder cancer. J Cachexia Sarcopenia Muscle. 2018;9(3):505–13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ishihara H, Kondo T, Omae K, Takagi T, Iizuka J, Kobayashi H, et al. Sarcopenia predicts survival outcomes among patients with urothelial carcinoma of the upper urinary tract undergoing radical nephroureterectomy: a retrospective multi-institution study. Int J Clin Oncol. 2017;22(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  11. Psutka SP, Boorjian SA, Moynagh MR, Schmit GD, Costello BA, Thompson RH, et al. Decreased skeletal muscle mass is associated with an increased risk of mortality after radical nephrectomy for localized renal cell cancer. J Urol. 2016;195(2):270–6.

    Article  PubMed  Google Scholar 

  12. Heidelberger V, Goldwasser F, Kramkimel N, Jouinot A, Huillard O, Boudou-Rouquette P, et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Investig New Drugs. 2017;35(4):436–41.

    Article  Google Scholar 

  13. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009;15(8):2920–6.

    Article  CAS  PubMed  Google Scholar 

  14. Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF, et al. Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. Clin Cancer Res. 2017;23(3):658–65.

    Article  CAS  PubMed  Google Scholar 

  15. Wendrich AW, Swartz JE, Bril SI, Wegner I, de Graeff A, Smid EJ, et al. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017;71:26–33.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshikawa T, Takano M, Miyamoto M, Yajima I, Shimizu Y, Aizawa Y, et al. Psoas muscle volume as a predictor of peripheral neurotoxicity induced by primary chemotherapy in ovarian cancers. Cancer Chemother Pharmacol. 2017;80(3):555–61.

    Article  CAS  PubMed  Google Scholar 

  17. Taguchi S, Akamatsu N, Nakagawa T, Gonoi W, Kanatani A, Miyazaki H, et al. Sarcopenia evaluated using the skeletal muscle index is a significant prognostic factor for metastatic urothelial carcinoma. Clin Genitourin Cancer. 2016;14(3):237–43.

    Article  PubMed  Google Scholar 

  18. Kacevska M, Robertson GR, Clarke SJ, Liddle C. Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Expert Opin Drug Metab Toxicol. 2008;4(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  19. Cushen SJ, Power DG, Teo MY, MacEneaney P, Maher MM, McDermott R, et al. Body composition by computed tomography as a predictor of toxicity in patients with renal cell carcinoma treated with Sunitinib. Am J Clin Oncol. 2017;40(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  20. Ishihara H, Kondo T, Omae K, Takagi T, Iizuka J, Kobayashi H, et al. Sarcopenia and the modified Glasgow prognostic score are significant predictors of survival among patients with metastatic renal cell carcinoma who are receiving first-line Sunitinib treatment. Target Oncol. 2016;11(5):605–17.

    Article  PubMed  Google Scholar 

  21. Motzer RJ, Jonasch E, Agarwal N, Bhayani S, Bro WP, Chang SS, et al. Kidney cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl. Compr Cancer Netw. 2017;15(6):804–34.

    Article  Google Scholar 

  22. Daly LE, Power DG, O’Reilly A, Donnellan P, Cushen SJ, O’Sullivan K, et al. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br J Cancer. 2017;116(3):310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daly LE, Ni Bhuachalla EB, Power DG, Cushen SJ, James K, Ryan AM. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. J Cachexia Sarcopenia Muscle. 2018;9(2):315–25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016;7(4):458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fukushima H, Kataoka M, Nakanishi Y, Sakamoto K, Takemura K, Suzuki H, et al. Posttherapeutic skeletal muscle mass recovery predicts favorable prognosis in patients with advanced urothelial carcinoma receiving first-line platinum-based chemotherapy. Urol Oncol. 2018;36(4):156.e9–156.e16.

    Article  Google Scholar 

  26. Reisinger KW, Bosmans JW, Uittenbogaart M, Alsoumali A, Poeze M, Sosef MN, et al. Loss of skeletal muscle mass during neoadjuvant chemoradiotherapy predicts postoperative mortality in esophageal Cancer surgery. Ann Surg Oncol. 2015;22(13):4445–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Antoun S, Birdsell L, Sawyer MB, Venner P, Escudier B, Baracos VE. Association of skeletal muscle wasting with treatment with sorafenib in patients with advanced renal cell carcinoma: results from a placebo-controlled study. J Clin Oncol. 2010;28(6):1054–60.

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda T, Ishihara H, Takagi T, Kondo T, Yoshida K, Iizuka J, et al. Prognostic impact of the components of progressive disease on survival after first-line tyrosine kinase inhibitor therapy for metastatic renal cell carcinoma. Target Oncol. 2018;13(3):379–87.

    Article  PubMed  Google Scholar 

  29. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35.

    Article  PubMed  Google Scholar 

  30. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–8.

    Article  PubMed  Google Scholar 

  31. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.

    Article  PubMed  Google Scholar 

  32. Iwamoto K, Ishihara H, Takagi T, Kondo T, Yoshida K, Iizuka J, et al. Evaluation of relative dose intensity during the early phase of first-line sunitinib treatment using a 2-week-on/1-week-off regimen for metastatic renal cell carcinoma. Med Oncol. 2018;35(6):78.

    Article  PubMed  Google Scholar 

  33. Kondo T, Takagi T, Kobayashi H, Iizuka J, Nozaki T, Hashimoto Y, et al. Superior tolerability of altered dosing schedule of sunitinib with 2-weeks-on and 1-week-off in patients with metastatic renal cell carcinoma--comparison to standard dosing schedule of 4-weeks-on and 2-weeks-off. Jpn J Clin Oncol. 2014;44(3):270–7.

    Article  PubMed  Google Scholar 

  34. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  35. Vera-Badillo FE, Templeton AJ, Duran I, Ocana A, de Gouveia P, Aneja P, et al. Systemic therapy for non-clear cell renal cell carcinomas: a systematic review and meta-analysis. Eur Urol. 2015;67(4):740–9.

    Article  PubMed  Google Scholar 

  36. Kroeger N, Xie W, Lee JL, Bjarnason GA, Knox JJ, Mackenzie MJ, et al. Metastatic non-clear cell renal cell carcinoma treated with targeted therapy agents: characterization of survival outcome and application of the international mRCC database consortium criteria. Cancer. 2013;119(16):2999–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heng DY, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–9.

    Article  CAS  PubMed  Google Scholar 

  38. Heng DY, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, et al. External validation and comparison with other models of the international metastatic renal-cell carcinoma database consortium prognostic model: a population-based study. Lancet Oncol. 2013;14(2):141–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beuselinck B, Vano YA, Oudard S, Wolter P, De Smet R, Depoorter L, et al. Prognostic impact of baseline serum C-reactive protein in patients with metastatic renal cell carcinoma (RCC) treated with sunitinib. BJU Int. 2014;114(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Cai X, Liu Q, Jian ZY, Li H, Wang KJ. Prognostic role of C-reactive protein in urological cancers: a meta-analysis. Sci Rep. 2015;5:12733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishihara H, Kondo T, Yoshida K, Omae K, Takagi T, Iizuka J, et al. Effect of systemic inflammation on survival in patients with metastatic renal cell carcinoma receiving second-line molecular-targeted therapy. Clin Genitourin Cancer. 2017;15(4):495–501.

    Article  PubMed  Google Scholar 

  42. Tanaka N, Mizuno R, Yasumizu Y, Ito K, Shirotake S, Masunaga A, et al. Prognostic value of neutrophil-to-lymphocyte ratio in patients with metastatic renal cell carcinoma treated with first-line and subsequent second-line targeted therapy: a proposal of the modified-IMDC risk model. Urol Oncol. 2017;35(2):39.e19–28.

    Article  Google Scholar 

  43. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 2011;6(7):e22538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 2016;54:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sala D, Sacco A. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care. 2016;19(3):171–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE. STAT3 promotes IFNgamma/TNFalpha-induced muscle wasting in an NF-kappaB-dependent and IL-6-independent manner. EMBO Mol Med. 2017;9(5):622–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016;23(3):554–62.

    Article  CAS  PubMed  Google Scholar 

  48. Miyake H, Matsushita Y, Watanabe H, Tamura K, Suzuki T, Motoyama D, et al. Significance of introduction of alternative dosing schedule for sunitinib during first-line treatment of patients with metastatic renal cell carcinoma. Med Oncol. 2018;35(10):133.

    Article  PubMed  Google Scholar 

  49. Lee JL, Kim MK, Park I, Ahn JH, Lee DH, Ryoo HM, et al. RandomizEd phase II trial of Sunitinib four weeks on and two weeks off versus two weeks on and one week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26(11):2300–5.

    Article  CAS  PubMed  Google Scholar 

  50. Bjarnason GA, Khalil B, Hudson JM, Williams R, Milot LM, Atri M, et al. Outcomes in patients with metastatic renal cell cancer treated with individualized sunitinib therapy: correlation with dynamic microbubble ultrasound data and review of the literature. Urol Oncol. 2014;32(4):480–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Nobuko Hata for providing secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ishihara.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Tsunenori Kondo received honoraria from Pfizer, Bayer, and Novartis. All other authors including Hiroki Ishihara, Toshio Takagi, Hironori Fukuda, Kazuhiko Yoshida, Junpei Iizuka, and Kazunari Tanabe declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, H., Takagi, T., Kondo, T. et al. Effect of Changes in Skeletal Muscle Mass on Oncological Outcomes During First-Line Sunitinib Therapy for Metastatic Renal Cell Carcinoma. Targ Oncol 13, 745–755 (2018). https://doi.org/10.1007/s11523-018-0600-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-018-0600-3

Navigation