Skip to main content
Log in

Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

There is an increasing awareness that anatomical approaches based on measurements of tumor size have significant limitations for assessing therapy response. Functional imaging techniques are increasing being used to monitor response to therapies with novel mechanisms of action, often predicting the success of therapy before conventional measurements have changed. Dynamic contrast-enhanced and diffusion magnetic resonance imaging (MRI) are the most advanced in their evidence base, and in this manuscript we focus on them as response parameters. Technology, data gathering methods, and current limitations for these techniques are addressed. With few exceptions, most studies shows that successful treatment is reflected by increases in tumor water diffusion values visible as increased apparent diffusion coefficient values. Most response assessment studies also show that successful treatment results in decreases in tumor vascularization and microvessel permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  2. Husband JE, Schwartz LH, Spencer J et al (2004) Evaluation of the response to treatment of solid tumours—a consensus statement of the International Cancer Imaging Society. Br J Cancer 90:2256–2260

    CAS  PubMed  Google Scholar 

  3. Benjamin RS, Choi H, Macapinlac HA et al (2007) We should desist using RECIST, at least in GIST. J Clin Oncol 25:1760–1764

    Article  PubMed  Google Scholar 

  4. Nathan P, Judson I, Padhani A et al (2008) A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J Clin Oncol 26:3550

    Article  Google Scholar 

  5. Saltz LB, Clarke S, Diaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26:2013–2019

    Article  CAS  PubMed  Google Scholar 

  6. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  7. Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  CAS  PubMed  Google Scholar 

  8. Workman P, Aboagye EO, Chung Y-L et al (2006) Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst 98:580–598

    Article  CAS  PubMed  Google Scholar 

  9. Weber WA, Czernin J, Phelps ME et al (2008) Technology insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol 5:44–54

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer NG, Taverna C, Strobel K et al (2007) Hodgkin disease: diagnostic value of FDG PET/CT after first-line therapy—is biopsy of FDG-avid lesions still needed? Radiology 244:257–262

    Article  PubMed  Google Scholar 

  11. Bahri S, Chen JH, Mehta RS et al (2009) Residual breast cancer diagnosed by MRI in patients receiving neoadjuvant chemotherapy with and without bevacizumab. Ann Surg Oncol 16:1619–1628

    Article  PubMed  Google Scholar 

  12. Al-Ibraheem A, Buck A, Krause BJ et al (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009:208725. doi:10.1155/2009/208725

    PubMed  Google Scholar 

  13. Hu LS, Baxter LC, Smith KA et al (2008) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. Am J Neuroradiol. doi:10.3174/ajnr.A1377

    Google Scholar 

  14. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437

    Article  CAS  PubMed  Google Scholar 

  15. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42S

    Article  CAS  PubMed  Google Scholar 

  16. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155

    Article  PubMed  Google Scholar 

  17. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

  18. Patterson DM, Padhani AR, Collins DJ (2008) Technology Insight: water diffusion MRI-a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5(4):220–233

    Article  PubMed  Google Scholar 

  19. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    CAS  PubMed  Google Scholar 

  20. Stejskal EO, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  21. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  22. Niendorf T, Dijkhuizen RM, Norris DG et al (1996) Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 36:847–857

    Article  CAS  PubMed  Google Scholar 

  23. Taouli B, Vilgrain V, Dumont E et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  24. Koh DM, Brown G, Riddell AM et al (2008) Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 18:903–910

    Article  CAS  PubMed  Google Scholar 

  25. Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822

    Article  PubMed  Google Scholar 

  26. Sumi M, Sakihama N, Sumi T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634

    PubMed  Google Scholar 

  27. Yoshikawa MI, Ohsumi S, Sugata S et al (2008) Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 26:222–226

    Article  PubMed  Google Scholar 

  28. Manenti G, Di Roma M, Mancino S et al (2008) Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med (Torino) 113:199–213

    Article  CAS  Google Scholar 

  29. Hayashida Y, Hirai T, Morishita S et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol 27:1419–1425

    CAS  PubMed  Google Scholar 

  30. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  31. Zelhof B, Pickles M, Liney G et al (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 103:883–888

    Article  PubMed  Google Scholar 

  32. Liu Y, Bai R, Sun H et al (2009) Diffusion-weighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr 33:858–862

    Article  PubMed  Google Scholar 

  33. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  CAS  PubMed  Google Scholar 

  34. Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836

    Article  CAS  PubMed  Google Scholar 

  35. Wang XZ, Wang B, Gao ZQ et al (2009) Diffusion-weighted imaging of prostate cancer: correlation between apparent diffusion coefficient values and tumor proliferation. J Magn Reson Imaging 29:1360–1366

    Article  PubMed  Google Scholar 

  36. Calvar JA, Meli FJ, Romero C et al (2005) Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol 72:273–280

    Article  CAS  PubMed  Google Scholar 

  37. Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96

    Article  CAS  PubMed  Google Scholar 

  38. Geschwind JF, Artemov D, Abraham S et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol 11:1245–1255

    Article  CAS  PubMed  Google Scholar 

  39. Kim H, Morgan DE, Zeng H et al (2008) Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology 248:844–851

    Article  PubMed  Google Scholar 

  40. Liimatainen T, Hakumaki JM, Kauppinen RA et al (2009) Monitoring of gliomas in vivo by diffusion MRI and (1)H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids. NMR Biomed 22:272–279

    Article  CAS  PubMed  Google Scholar 

  41. Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109

    Article  PubMed  Google Scholar 

  42. Hamstra D, Rehemtulla A, BD R (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109

    Article  PubMed  Google Scholar 

  43. Pickles MD, Gibbs P, Lowry M et al (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  44. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  45. Theilmann RJ, Borders R, Trouard TP et al (2004) Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6:831–837

    Article  PubMed  Google Scholar 

  46. Kamel IR, Rayes DK, Liapi E et al (2007) Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol 18:49–56

    Article  PubMed  Google Scholar 

  47. Cui Y, Zhang XP, Sun YS et al (2008) Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 248:894–900

    Article  PubMed  Google Scholar 

  48. Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol 16:2637–2643

    Article  PubMed  Google Scholar 

  49. Uhl M, Saueressig U, van Buiren M et al (2006) Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41:618–623

    Article  CAS  PubMed  Google Scholar 

  50. Moffat BA, Chenevert TL, Lawrence TS et al (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529

    Article  CAS  PubMed  Google Scholar 

  51. Mardor Y, Pfeffer R, Spiegelmann R et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100

    Article  PubMed  Google Scholar 

  52. Hamstra DA, Galban CJ, Meyer CR et al (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26:3387–3394

    Article  PubMed  Google Scholar 

  53. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  CAS  PubMed  Google Scholar 

  54. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    CAS  PubMed  Google Scholar 

  55. Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49

    Article  CAS  PubMed  Google Scholar 

  56. Parker GJ (2004) Analysis of MR diffusion weighted images. Br J Radiol 77:S176–S185

    Article  PubMed  Google Scholar 

  57. Oostendorp M, Post MJ, Backes WH (2009) Vessel growth and function: depiction with contrast-enhanced MR imaging. Radiology 251:317–335

    Article  PubMed  Google Scholar 

  58. Kety S (1960) Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res 8:228–236

    Google Scholar 

  59. Kety S (1960) Blood-tissue exchange methods. Theory of blood-tissue exchange and its application to measurement of blood flow. Meth Med Res 8:223–227

    Google Scholar 

  60. Tofts P, Brix G, Buckley D et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  61. Wilkinson ID, Jellineck DA, Levy D et al (2006) Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 58:640–646, discussion 640–646

    Article  PubMed  Google Scholar 

  62. O’Connor JP, Carano RA, Clamp AR et al (2009) Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 15:6674–6682

    Article  PubMed  CAS  Google Scholar 

  63. Lankester KJ, Maxwell RJ, Pedley RB et al (2007) Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down. Int J Oncol 30:453–460

    CAS  PubMed  Google Scholar 

  64. Lankester KJ, Taylor JN, Stirling JJ et al (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 25:796–805

    Article  PubMed  Google Scholar 

  65. Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  CAS  PubMed  Google Scholar 

  66. Lankester KJ, Taylor NJ, Stirling JJ et al (2005) Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI. Br J Cancer 93:979–985

    Article  CAS  PubMed  Google Scholar 

  67. Thukral A, Thomasson DM, Chow CK et al (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab–initial experience. Radiology 244:727–735

    Article  PubMed  Google Scholar 

  68. Walker-Samuel S, Parker CC, Leach MO et al (2007) Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function. Phys Med Biol 52:75–89

    Article  CAS  PubMed  Google Scholar 

  69. Taylor NJ, Tunariu N, Stirling JJ et al (2009) Non-enhancing pixels: a specific additional DCE-MRI kinetic parameter for assessing antivascular effects of anti-angiogenic and vascular disruptive agents. Proceedings of the joint meeting of International Society of Magnetic Resonance in Medicine, 16th Scientific Meeting and Exhibition, Honolulu:2262

  70. Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction = induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 228:271–278

    Article  PubMed  Google Scholar 

  71. Schlemmer HP, Merkle J, Grobholz R et al (2004) Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14:309–317

    Article  PubMed  Google Scholar 

  72. Padhani AR, Dzik-Jurasz A (2004) Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging 15:41–57

    Article  PubMed  Google Scholar 

  73. Ferrier MC, Sarin H, Fung SH et al (2007) Validation of dynamic contrast-enhanced magnetic resonance imaging-derived vascular permeability measurements using quantitative autoradiography in the RG2 rat brain tumor model. Neoplasia 9:546–555

    Article  CAS  PubMed  Google Scholar 

  74. Eby PR, Partridge SC, White SW et al (2008) Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 15:1246–1254

    Article  PubMed  Google Scholar 

  75. Niermann KJ, Fleischer AC, Huamani J et al (2007) Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. J Ultrasound Med 26:749–756

    PubMed  Google Scholar 

  76. Galban CJ, Chenevert TL, Meyer CR et al (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15:572–576

    Article  CAS  PubMed  Google Scholar 

  77. Barentsz JO, Berger-Hartog O, Witjes JA et al (1998) Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207:791–797

    CAS  PubMed  Google Scholar 

  78. Ah-See ML, Makris A, Taylor NJ et al (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14:6580–6589

    Article  CAS  PubMed  Google Scholar 

  79. Padhani AR, Hayes C, Assersohn L et al (2006) Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 239:361–374

    Article  PubMed  Google Scholar 

  80. Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10:277–285

    Article  CAS  PubMed  Google Scholar 

  81. de Lussanet QG, Backes WH, Griffioen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 63:1309–1315

    Article  PubMed  Google Scholar 

  82. Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74:766–773

    PubMed  Google Scholar 

  83. Padhani AR, MacVicar AD, Gapinski CJ et al (2001) Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with mr imaging. Radiology 218:365–374

    CAS  PubMed  Google Scholar 

  84. Li W, Brophy DP, Chen Q et al (2000) Semiquantitative assessment of uterine perfusion using first pass dynamic contrast-enhanced MR imaging for patients treated with uterine fibroid embolization. J Magn Reson Imaging 12:1004–1008

    Article  CAS  PubMed  Google Scholar 

  85. O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  CAS  Google Scholar 

  86. Zweifel M, Padhani AR (2010) Perfusion imaging in the early clinical development of antivascular drugs: decorations or decision making tools? Eur J Nucl Med Mol Imaging. In press

  87. Morgan B, Thomas AL, Drevs J et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  CAS  PubMed  Google Scholar 

  88. Galbraith SM, Maxwell RJ, Lodge MA et al (2003) Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21:2831–2842

    Article  CAS  PubMed  Google Scholar 

  89. Liu G, Rugo HS, Wilding G et al (2005) Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 23:5464–5473

    Article  CAS  PubMed  Google Scholar 

  90. Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578

    Article  CAS  PubMed  Google Scholar 

  91. Flaherty KT, Rosen MA, Heitjan DF et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7:496–501

    CAS  PubMed  Google Scholar 

  92. Baar J, Silverman P, Lyons J et al (2009) A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res 15:3583–3590

    Article  CAS  PubMed  Google Scholar 

  93. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  94. Kamoun WS, Ley CD, Farrar CT et al (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27:2542–2552

    Article  CAS  PubMed  Google Scholar 

  95. Weinmann HJ, Laniado M, Mutzel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172

    CAS  PubMed  Google Scholar 

  96. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  97. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606

    Article  PubMed  Google Scholar 

  98. Landis CS, Li X, Telang FW et al (2000) Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 44:563–574

    Article  CAS  PubMed  Google Scholar 

  99. Buckley DL (2002) Transcytolemmal water exchange and its affect on the determination of contrast agent concentration in vivo. Magn Reson Med 47:420–424

    Article  PubMed  Google Scholar 

  100. Galbraith SM, Lodge MA, Taylor NJ et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142

    Article  PubMed  Google Scholar 

  101. Koh DM, Blackledge M, Collins DJ et al (2009) Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19:2728–2738

    Article  PubMed  Google Scholar 

  102. Ashton E, Raunig D, Ng C et al (2008) Scan-rescan variability in perfusion assessment of tumors in MRI using both model and data-derived arterial input functions. J Magn Reson Imaging 28:791–796

    Article  PubMed  Google Scholar 

  103. Jackson A, O’Connor JP, Parker GJ et al (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13:3449–3459

    Article  PubMed  Google Scholar 

  104. Rose CJ, Mills SJ, O’Connor JP et al (2009) Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 62:488–499

    Article  PubMed  Google Scholar 

  105. Lee KC, Bradley DA, Hussain M et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9:1003–1011

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar R. Padhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhani, A.R., Khan, A.A. Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Targ Oncol 5, 39–52 (2010). https://doi.org/10.1007/s11523-010-0135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-010-0135-8

Keywords

Navigation