Skip to main content
Log in

Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

We investigated the effects of three weeks of renutrition with a normal protein diet on oxidant/antioxidant status in malnourished rats using biochemistry and histology.

Methods

Eighteen young Wistar rats were divided into three groups: control group was fed on a normal protein diet; malnourished group was fed on low protein diet and renourished group was fed on low protein diet followed by a normal protein diet. Serum albumin was evaluated. Malondialdehyde, protein carbonyl, superoxide dismutase and catalase levels were determined in the intestine, muscle and liver. Intestinal and hepatic damage were assessed by histological examination.

Results

Protein malnutrition resulted in a significant decrease of body weight, albumin level, villus length, intraepithelial lymphocytes counts (IELC) and superoxide dismutase level (liver and muscle). However, catalase activity increased significantly in muscle and gut but there was no difference in liver. In all organs, malondialdehyde and protein carbonyl content of malnourished group showed a significant increase. Interestingly, a normal protein diet for three weeks resulted in a return to normal levels of superoxide dismutase, albumin, malondialdehyde and protein carbonyl in all organs. Catalase activity decreased in the muscle and gut and exhibited no significant difference in the liver. The renutrition diet enhanced also the recovery of intestinal epithelium by increasing villus length. Hepatic damage of rats fed normal protein diet was markedly reduced (macrovesicular steatosis decreased by 45%).

Conclusion

The normal protein diet could improve the oxidant/antioxidant imbalance and organ damage induced by protein malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akinola F F, Oguntibeju O O, Alabi O O (2010). Effects of severe malnutrition on oxidative stress in Wistarrats. Sci Res Essays, 10: 1145–1149

    Google Scholar 

  • Araya J, Rodrigo R, Videla L A, Thielemann L, Orellana M, Pettinelli P, Poniachik J (2004). Increase in long-chain polyunsaturated fatty acid n- 6/n- 3 ratio in relation to hepatic steatosis in patients with nonalcoholic fatty liver disease. Clin Sci (Lond), 106(6): 635–643

    Article  CAS  Google Scholar 

  • Ashorn P, Alho L, Ashorn U, Cheung Y B, Dewey K G, Gondwe A, Harjunmaa U, Lartey A, Phiri N, Phiri T E, Vosti S A, Zeilani M, Maleta K (2015). Supplementation of maternal diets during pregnancy and for 6 months postpartum and infant diets thereafter with small quantity lipid-based nutrient supplements does not promote child growth by 18 months of age in rural Malawi: a randomized controlled trial. J Nutr, 145(6): 1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Ashour M N, Salem S I, El-Gadban H M, Elwan N M, Basu T K (1999). Antioxidant status in children with protein-energy malnutrition (PEM) living in Cairo, Egypt. Eur J Clin Nutr, 53(8): 669–673

    Article  PubMed  CAS  Google Scholar 

  • Assaad H, Yao K, Tekwe C D, Feng S, Bazer F W, Zhou L, Carroll R J, Meininger C J, Wu G (2014). Analysis of energy expenditure in dietinduced obese rats. Front Biosci (Landmark Ed), 19(6): 967–985

    Article  Google Scholar 

  • Badaloo A, Hsu J W, Taylor-Bryan C, Green C, Reid M, Forrester T, Jahoor F (2012). Dietary cysteine is used more efficiently by children with severe acute malnutrition with edema compared with those without edema. Am J Clin Nutr, 95(1): 84–90

    Article  PubMed  CAS  Google Scholar 

  • Badaloo A, Reid M, Soares D, Forrester T, Jahoor F (2005). Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with protein-energy malnutrition. Am J Clin Nutr, 81(5): 1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Bodiga V L, Boindala S, Putcha U, Subramaniam K, Manchala R (2005). Chronic low intake of protein or vitamins increases the intestinal epithelial cell apoptosis in Wistar/NIN rats. Nutrition, 21(9): 949–960

    Article  PubMed  CAS  Google Scholar 

  • Brookes P S (2005). Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med, 38(1): 12–23

    Article  PubMed  CAS  Google Scholar 

  • Buchet A, Belloc C, Leblanc-Maridor M, Merlot E (2017). Effects of age and weaning conditions on blood indicators of oxidative status in pigs. PLoS One, 12(5): e0178487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke N C, Scaglia G, Boland H T, SweckerW S Jr (2009). Influence of two-stage weaning with subsequent transport on body weight, plasma lipid peroxidation, plasma selenium, and on leukocyte glutathione peroxidase and glutathione reductase activity in beef calves. Vet Immunol Immunopathol, 127(3–4): 365–370

    Article  PubMed  CAS  Google Scholar 

  • Carreira S, Brun-Achirou D, Brachet P, Puigserver A (1996). Hepatic and renal D-amino acid oxidase activities in the growing rat after ten days of protein undernutrition and refeeding. Reprod Nutr Dev, 36(1): 73–82

    Article  PubMed  CAS  Google Scholar 

  • Catal F, Avci A, Karadag A, Alioglu B, Avci Z (2007). Oxidant and antioxidant status of Turkish marasmic children: a single center study. J Trace Elem Med Biol, 21(2): 108–112

    Article  PubMed  CAS  Google Scholar 

  • Chappell V L, Thompson M D, Jeschke M G, Chung D H, Thompson J C, Wolf S E (2003). Effects of incremental starvation on gut mucosa. Dig Dis Sci, 48(4): 765–769

    Article  PubMed  Google Scholar 

  • Cho M K, Kim Y G, Lee M G, Kim S G (2000). The effect of cysteine on the altered expression of class α and mu glutathione S-transferase genes in the rat liver during protein-calorie malnutrition. Biochim Biophys Acta, 1502(2): 235–246

    Article  PubMed  CAS  Google Scholar 

  • Coutinho B P, Oriá R B, Vieira C M, Sevilleja J E, Warren C A, Maciel J G, Thompson M R, Pinkerton R C, Lima A A, Guerrant R L (2008). Cryptosporidium infection causes undernutrition and, conversely, weanling undernutrition intensifies infection. J Parasitol, 94(6): 1225–1232

    Article  PubMed  CAS  Google Scholar 

  • Doumas B T, Watson W A, Biggs H G (1971). Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta, 31(1): 87–96

    Article  PubMed  CAS  Google Scholar 

  • Esrefoglu M, Akinci A, Taslidere E, Elbe H, Cetin A, Ates B (2016). Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats. Biotech Histochem, 91(7): 455–464

    Article  PubMed  CAS  Google Scholar 

  • FAO of the United Nations (2004). Under nourishment around the world. In: The state of food insecurity in the world 2004.

  • Freudenberg A, Petzke K J, Klaus S (2012). Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem, 23(11): 1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Wu J, Dong Z, Hua C, Hu H, Mei C (2010). A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a lowprotein diet alone. Br J Nutr, 103(4): 608–616

    Article  PubMed  CAS  Google Scholar 

  • Garcia Caraballo S C, Comhair T M, Dejong C H C, Lamers W H, Koehler S E (2017). Dietary treatment of fatty liver: High dietary protein content has an antisteatotic and antiobesogenic effect in mice. Biochim Biophys Acta, 1863(7): 1789–1804

    Article  CAS  Google Scholar 

  • Gendrel D, Richard-Lenoble D, Kombila M, Nardou M, Gahouma D, Barbet J P, Walter P (1992). [Decreased intraepithelial lymphocytes in the intestinal mucosa in children with malnutrition and parasitic infections]. Ann Pediatr (Paris), 39(2): 95–98

    CAS  Google Scholar 

  • Gourine H, Dib W, Grar H, Benakriche B, Saidi D, Kheroua O (2015). Symbiotic enhances gut mucosa recovery rate and reduces overgrowth of bacteria in experimental protein malnutrition. Int J Pharm Pharm Sci, 7: 96–100

    Google Scholar 

  • Green C O, Badaloo A V, Hsu J W, Taylor-Bryan C, Reid M, Forrester T, Jahoor F (2014). Effects of randomized supplementation of methionine or alanine on cysteine and glutathione production during the early phase of treatment of children with edematous malnutrition. Am J Clin Nutr, 99(5): 1052–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerrant R L, Hughes J M, Lima N L, Crane J (1990). Diarrhea in developed and developing countries: magnitude, special settings, and etiologies. Rev Infect Dis, 12(Suppl 1): S41–S50

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrant R L, Oriá R B, Moore S R, Oriá M O, Lima A A (2008). Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev, 66(9): 487–505

    Article  PubMed  Google Scholar 

  • Hensley K, Kotake Y, Sang H, Pye Q N, Wallis G L, Kolker L M, Tabatabaie T, Stewart C A, Konishi Y, Nakae D, Floyd R A (2000). Dietary choline restriction causes complex I dysfunction and increased H(2)O(2) generation in liver mitochondria. Carcinogenesis, 21(5): 983–989

    Article  PubMed  CAS  Google Scholar 

  • Hughes W (1945). Fatty liver and malignant malnutrition. Lancet, 2(6383): 861–862

    Article  PubMed  CAS  Google Scholar 

  • Ibukun-Olu A (2001). Public health nutrition, Nigeria, 2nd Tsco Press, pp.107–112.

    Google Scholar 

  • Jimoh F O, Odutuga A A, Toladiji A, and the F.O. Jimoh, and the A.A. Odutuga, and the A.T. Oladiji (2005). Status of lipid peroxidation and antioxidant enzymes in tissues of rats fed low-protein diet. Pak J Nutr, 4(6): 431–434

    Article  Google Scholar 

  • Keusch G T (2003). The history of nutrition: malnutrition, infection and immunity. J Nutr, 133(1): 336S–340S

    Article  PubMed  Google Scholar 

  • Khare M, Mohanty C, Das B K, Jyoti A, Mukhopadhyay B, Mishra S P (2014). Free radicals and antioxidant status in protein energy malnutrition. Int J Pediatr, 2014: ID 254396, 6p.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kheroua O, Belleville J (1981). Behaviour of digestive enzymes in the pancreatic juice and pancreas of rats fed on a low-protein diet (3 p. 100 of cereal protein) then on a balanced diet (23.5 p. 100 of mixed protein). Reprod Nutr Dev, 21(6A): 901–917

    Article  PubMed  CAS  Google Scholar 

  • Kumari R, Rao Y N, Talukdar B, Agarwal S, Puri R K (1993). Serum enzyme abnormalities in protein energy malnutrition. Indian Pediatr, 30(4): 469–473

    PubMed  CAS  Google Scholar 

  • Lamberti L M, Walker C L, Chan K Y, Jian W Y, Black R E (2013). Oral zinc supplementation for the treatment of acute diarrhea in children: a systematic review and meta-analysis. Nutrients, 5(11): 4715–4740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leitch G J, Udezulu I A, He Q, Visvesvara G S (1993). Effects of protein malnutrition on experimental giardiasis in the Mongolian gerbil. Scand J Gastroenterol, 28(10): 885–893

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang H, Stoner G D, Bray T M (2002). Dietary supplementation with cysteine prodrugs selectively restores tissue glutathione levels and redox status in protein-malnourished mice(1). J Nutr Biochem, 13(10): 625–633

    Article  PubMed  Google Scholar 

  • Li W, Shi Y H, Yang R L, Cui J, Xiao Y, Le G W (2010). Reactive oxygen species serve as signals mediating glucose-stimulated somatostatin secretion from cultured rat gastric primary D-cells. Free Radic Res, 44(6): 614–623

    Article  PubMed  CAS  Google Scholar 

  • Lieber C S (2004). CYP2E1: from ASH to NASH. Hepatol Res, 28(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Bolick D T, Kolling G L, Fu Z, Guerrant R L (2016). Protein malnutrition impairs intestinal epithelial turnover: a potential mechanism of increased cryptosporidiosis in a murine model. Infect Immun, 84(12): 3542–3549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lochs H, Dejong C, Hammarqvist F, Hebuterne X, Leon-Sanz M, Schütz T, van Gemert W, van Gossum A, Valentini L, Lübke H, Bischoff S, Engelmann N, Thul P, and the DGEM (German Society for Nutritional Medicine). and the ESPEN (European Society for Parenteral and Enteral Nutrition) (2006). ESPEN Guidelines on Enteral Nutrition: Gastroenterology. Clin Nutr, 25(2): 260–274

    Article  PubMed  CAS  Google Scholar 

  • Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1): 265–275

    PubMed  CAS  Google Scholar 

  • Luo Z, Zhu W, Guo Q, Luo W, Zhang J, Xu W, Xu J (2016). Weaning Induced Hepatic Oxidative Stress, Apoptosis, and Amino transferases through MAPK Signaling Pathways in Piglets. Oxid Med Cell Longev, 2016: Article ID 4768541, 10p.

    PubMed  PubMed Central  Google Scholar 

  • Marks D B, Marks A D, Smith C M (1996). Basic Medical Biochemistry: A Clinical Approach. New York, Lippincott Williams & Wilkins.

    Google Scholar 

  • Mayo-Wilson E, Junior J A, Imdad A, Dean S, Chan X H, Chan E S, Jaswal A, Bhutta Z A (2014). Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst Rev, (5): CD009384

    Google Scholar 

  • Moundras C, Remesy C, Demigne C (1993). Dietary protein paradox: decrease of amino acid availability induced by high-protein diets. Am J Physiol, 264(6 Pt 1): G1057–G1065

    PubMed  CAS  Google Scholar 

  • Mudd S H, Brosnan J T, Brosnan M E, Jacobs R L, Stabler S P, Allen R H, Vance D E, Wagner C (2007). Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr, 85(1): 19–25

    Article  PubMed  CAS  Google Scholar 

  • Müller O, Krawinkel M (2005). Malnutrition and health in developing countries. CMAJ, 173(3): 279–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieto N, López-Pedrosa J M, Mesa M D, Torres M I, Fernández M I, Ríos A, Suárez M D, Gil A (2000). Chronic diarrhea impairs intestinal antioxidant defense system in rats at weaning. Dig Dis Sci, 45(10): 2044–2050

    Article  PubMed  CAS  Google Scholar 

  • Noguchi Y, Shikata N, Furuhata Y, Kimura T, Takahashi M (2008). Characterization of dietary protein-dependent amino acid metabolism by linking free amino acids with transcriptional profiles through analysis of correlation. Physiol Genomics, 34(3): 315–326

    Article  PubMed  CAS  Google Scholar 

  • Nuñez M C, Bueno J D, Ayudarte M V, Almendros A, Ríos A, SuárezM D, Gil A (1996). Dietary restriction induces biochemical and morphometric changes in the small intestine of nursing piglets. J Nutr, 126(4): 933–944

    Article  PubMed  Google Scholar 

  • Ogasawara T, Ohnhaus E E, Hoensch H P (1989). Glutathione and its related enzymes in the small intestinal mucosa of rats: effects of starvation and diet. Res Exp Med (Berl), 189(3): 195–204

    Article  CAS  Google Scholar 

  • Pan M, Cederbaum A I, Zhang Y L, Ginsberg H N, Williams K J, Fisher E A (2004). Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest, 113(9): 1277–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perampalli T, Swami S C, Kumbar K M, Suryakar A N, Shaikh A K (2010). Possible role of oxidative stress in malnourished children. Curr Pediatr Res, 14: 19–23

    Google Scholar 

  • Peters J C, Harper A E (1985). Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr, 115(3): 382–398

    Article  PubMed  CAS  Google Scholar 

  • Poullain M G, Cezard J P, Marché C, Macry J, Roger L, Grasset E, Broyart J P (1991). Effects of dietary whey proteins, their peptides or amino-acids on the ileal mucosa of normally fed and starved rats. Clin Nutr, 10(1): 49–54

    Article  PubMed  CAS  Google Scholar 

  • Prada F J A, Macedo D V, Rostom de Mello M A (2007). Oxidative stress during rehabilitation from protein malnutrition associated with aerobic exercise in rats. Braz Arch Biol Technol, 50(1): 45–55

    Article  CAS  Google Scholar 

  • Ramakrishnan U, Nguyen P, Martorell R (2009). Effects of micronutrients on growth of children under 5 y of age: meta-analyses of single and multiple nutrient interventions. Am J Clin Nutr, 89(1): 191–203

    Article  PubMed  CAS  Google Scholar 

  • Robertson R P, Harmon J, Tran P O, Tanaka Y, Takahashi H (2003). Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes, 52(3): 581–587

    Article  PubMed  CAS  Google Scholar 

  • Roediger W E, Waterlow J (1995). New views on the pathogenesis of kwashiorkor: methionine and other amino acids. J Pediatr Gastroenterol Nutr, 21(2): 130–136

    Article  PubMed  CAS  Google Scholar 

  • Schwarz J, Tome D, Baars A, Hooiveld GJ, Muller M (2012). Dietary protein affects gene expression and prevents lipid accumulation in the liver in mice. Plos one7, 10: e47303.

    Article  CAS  Google Scholar 

  • Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K (2002). In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol, 37(1): 56–62

    Article  PubMed  CAS  Google Scholar 

  • Semba R D (2016). The Rise and Fall of Protein Malnutrition in Global Health. Ann Nutr Metab, 69(2): 79–88

    Article  PubMed  CAS  Google Scholar 

  • Siegel G J (1999). Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia, Lippincott-Raven.

    Google Scholar 

  • Sies H (1999). Glutathione and its role in cellular functions. Free Radic Biol Med, 27(9–10): 916–921

    Article  PubMed  CAS  Google Scholar 

  • Stammers A L, Lowe N M, Medina M W, Patel S, Dykes F, Pérez-Rodrigo C, Serra-Majam L, Nissensohn M, Moran V H (2015). The relationship between zinc intake and growth in children aged 1–8 years: a systematic review and meta-analysis. Eur J Clin Nutr, 69(2): 147–153

    Article  PubMed  CAS  Google Scholar 

  • Stevens G A, Bennett J E, Hennocq Q, Lu Y, De-Regil L M, Rogers L, Danaei G, Li G, White R A, Flaxman S R, Oehrle S P, Finucane M M, Guerrero R, Bhutta Z A, Then-Paulino A, Fawzi W, Black R E, Ezzati M (2015). Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of populationbased surveys. Lancet Glob Health, 3(9): e528–e536

    Article  PubMed  Google Scholar 

  • Tatli M M, Vural H, Koc A, Kosecik M, Atas A (2000). Altered antioxidant status and increased lipid peroxidation in marasmic children. Pediatr Int, 42(3): 289–292

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Cai Q, Bowen R, Wei H (1995). Effects of caloric restriction on age-related oxidative modifications of macromolecules and lymphocyte proliferation in rats. Free Radic Biol Med, 19(6): 859–865

    Article  PubMed  CAS  Google Scholar 

  • Tohyama Y, Takano T, Yamamura H (2004). B cell responses to oxidative stress. Curr Pharm Des, 10(8): 835–839

    Article  PubMed  CAS  Google Scholar 

  • Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(Pt 2): 335–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueno P M, Oriá R B, Maier E A, Guedes M, de Azevedo O G, Wu D, Willson T, Hogan S P, Lima A A, Guerrant R L, Polk D B, Denson L A, Moore S R (2011). Alanyl-glutamine promotes intestinal epithelial cell homeostasis in vitro and in a murine model of weanling undernutrition. Am J Physiol Gastrointest Liver Physiol, 301(4): G612–G622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • UNICEF (2009). New York: The state of the world children 2008, Child survival, where we stand, (Online) (Cited 2009, October 2), Available from: URL:http://www.unicef.org/sowc08/ docs/sow08.

  • van der Merwe L F, Moore S E, Fulford A J, Halliday K E, Drammeh S, Young S, Prentice A M (2013). Long-chain PUFA supplementation in rural African infants: a randomized controlled trial of effects on gut integrity, growth, and cognitive development. Am J Clin Nutr, 97(1): 45–57

    Article  PubMed  CAS  Google Scholar 

  • Vlasova A N, Paim F C, Kandasamy S, Alhamo M A, Fischer D D, Langel S N, Deblais L, Kumar A, Chepngeno J, Shao L, Huang H C, Candelero-Rueda R A, Rajashekara G, Saif L J (2017). Protein malnutrition modifies innate immunity and gene expression by intestinal epithelial cells and human rotavirus infection in neonatal gnotobiotic pigs. MSphere, 2(2): e00046–e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush M A, Diehl A M (2000). Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys, 378(2): 259–268

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Sun Z, He Z, Liu S, Zhang Q, Li X, Tan Z, Han X, Tang S, Zhou C, Wang M(2012). Effects of protein and/or energy restriction for six weeks, followed with nutritional recovery on the antioxidant capacity and development of liver, spleen and muscle of weaned kids. J Agric Sci, 4: 235–247

    Google Scholar 

  • Ying Y, Yun J, Guoyao W, Kaiji S, Zhaolai D, Zhenlong W (2015). Dietary L-methionine restriction decreases oxidative stress in porcine liver mitochondria. Exp Gerontol, 65: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M B (2013). Iodine deficiency and excess in children: worldwide status in 2013. Endocr Pract, 19(5): 839–846

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Directorate General for Scientific Research and Technological Development (DGRSDT, MESRS, Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane Gourine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourine, H., Grar, H., Dib, W. et al. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats. Front. Biol. 13, 366–375 (2018). https://doi.org/10.1007/s11515-018-1511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1511-5

Keywords

Navigation