Skip to main content
Log in

Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Powdered curcumin was either dissolved in the lipid phase of a nanoemulsion delivery system or it was directly mixed with an excipient nanoemulsion. The influence of thermal treatment (30 or 90 °C) and protein addition (caseinate) on the bioaccessibility and transformation of curcumin was then investigated using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. Curcumin solubility was high in nanoemulsion delivery systems exposed to both thermal treatments because it was already present in the lipid phase. Conversely, curcumin solubility of a powder mixed with an excipient nanoemulsion was appreciably lower when exposed to 30 °C than 90 °C. This effect was attributed to the greater transfer of curcumin to the lipid phase of the excipient nanoemulsions at elevated temperatures. For the heated samples, the bioaccessibility and transformation of curcumin was not greatly affected by original curcumin location or protein addition. However, curcumin bioaccessibility was appreciably higher in the presence of nanoemulsion lipid droplets than in their absence, which was attributed to an increase in the solubilization capacity of the mixed micelle phase. This study provides some useful information for improving the design of functional foods to improve the oral bioavailability profile of lipophilic nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Heger, R. F. van Golen, M. Broekgaarden, M. C. Michel, Pharmacol Rev 66(1), 222 (2014)

    Article  Google Scholar 

  2. H. K. Syed, K. B. Liew, G. O. K. Loh and K. K. Peh, Food Chem 170 (0), 321 (2015).

  3. R. Wilken, M. S. Veena, M. B. Wang and E. S. Srivatsan, Molecular cancer 10, 1–19 (2011)

  4. P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Mol Pharm 4(6), 807 (2007)

    Article  CAS  Google Scholar 

  5. S. Prasad, S. C. Gupta, A. K. Tyagi, B. B. Aggarwal, Biotechnol Adv 32(6), 1053 (2014)

    Article  CAS  Google Scholar 

  6. A. Jitoe-Masuda, A. Fujimoto, T. Masuda, Curr Pharm Des 19(11), 2084 (2013)

    CAS  Google Scholar 

  7. S. Fu, Z. Shen, S. Ajlouni, K. Ng, L. Sanguansri and M. A. Augustin, Food Chem 149 (0), 47–53 (2014).

  8. X. Chen, L.-Q. Zou, J. Niu, W. Liu, S.-F. Peng, C.-M. Liu, Molecules 20(8), 14293 (2015)

    Article  CAS  Google Scholar 

  9. F.-P. Chen, B.-S. Li, C.-H. Tang, J Agric Food Chem 63(13), 3559 (2015)

    Article  CAS  Google Scholar 

  10. Y.-H. Wang, J.-M. Wang, X.-Q. Yang, J. Guo, Y. Lin, Food & Function 6(8), 2636 (2015)

    Article  CAS  Google Scholar 

  11. B. R. Shah, Y. Li, W. Jin, et al., Food Hydrocoll 52, 369 (2016)

    Article  CAS  Google Scholar 

  12. N. P. Aditya, S. Aditya, H.-J. Yang, et al., J Funct Foods 15, 35 (2015)

    Article  CAS  Google Scholar 

  13. T. P. Sari, B. Mann, R. Kumar, et al., Food Hydrocoll 43 (0), 540 (2015).

  14. K. Ahmed, Y. Li, D. J. McClements, H. Xiao, Food Chem 132(2), 799 (2012)

    Article  CAS  Google Scholar 

  15. A. R. Patel, K. P. Velikov, LWT Food Sci Technol 44(9), 1958 (2011)

    Article  CAS  Google Scholar 

  16. J. Xiao, S. Nian, Q. Huang, Food Hydrocoll 51, 166 (2015)

    Article  CAS  Google Scholar 

  17. K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, D. J. McClements, Food Chem 182, 275 (2015)

    Article  CAS  Google Scholar 

  18. D. J. McClements, H. Xiao, Food & Function 3(3), 202 (2012)

    Article  CAS  Google Scholar 

  19. L. Zou, W. Liu, C. Liu, H. Xiao, D. J. McClements, J Agric Food Chem 63, 2052 (2015)

    Article  CAS  Google Scholar 

  20. L. Zou, B. Zheng, W. Liu, C. Liu, H. Xiao, D. J. McClements, J Funct Foods 15, 72 (2015)

    Article  CAS  Google Scholar 

  21. L. Zou, W. Liu, C. Liu, H. Xiao, D. J. McClements, Food & Function 6(8), 2475 (2015)

    Article  CAS  Google Scholar 

  22. D. J. McClements, H. Xiao, Food & Function 5(7), 1320 (2014)

    Article  CAS  Google Scholar 

  23. D. J. McClements, F. Li, H. Xiao, Annu Rev Food Sci T 6(6), 299 (2015)

    Article  CAS  Google Scholar 

  24. J. W. Brady, Introductory Food Chemistry (Cornell University Press, Ithaca, N.Y, 2013)

    Google Scholar 

  25. S. Damodaran, K. L. Parkin, O. R. Fennema, Fennema’s Food Chemistry, Fourth edn. (CRC Press, Boca Raton, FL., 2007)

    Google Scholar 

  26. F.-P. Chen, B.-S. Li, C.-H. Tang, Food Res Int 75, 157 (2015)

    Article  CAS  Google Scholar 

  27. M. Li, J. Cui, M. O. Ngadi, Y. Ma, Food Chem 180, 48 (2015)

    Article  CAS  Google Scholar 

  28. K. Pan, Q. Zhong, S. J. Baek, J Agric Food Chem 61(25), 6036 (2013)

    Article  CAS  Google Scholar 

  29. C. Qian, E. A. Decker, H. Xiao, D. J. McClements, Food Chem 135(3), 1440 (2012)

    Article  CAS  Google Scholar 

  30. L. Salvia-Trujillo, C. Qian, O. Martin-Belloso, D. J. McClements, Food Chem 139(1–4), 878 (2013)

    Article  CAS  Google Scholar 

  31. R. Zhang, Z. Zhang, H. Zhang, E. A. Decker and D. J. McClements, Food Hydrocoll (0).

  32. Y. Mao, D. J. McClements, Food & Function 3(10), 1025 (2012)

    Article  CAS  Google Scholar 

  33. D. J. McClements, Food emulsions: principles, practice and techniques, third, Edition edn. (CRC Press, Boca Raton, FL, 2015)

    Book  Google Scholar 

  34. S. J. Radford, E. Dickinson, Colloids Surf A Physicochem Eng Asp 238(1–3), 71 (2004)

    Article  CAS  Google Scholar 

  35. A. H. Saberi, Y. Fang, D. J. McClements, J Colloid Interface Sci 391, 95 (2013)

    Article  CAS  Google Scholar 

  36. J. Israelachvili, Intermolecular and surface forces, third edition, third, Edition edn. (Academic Press, London, UK, 2011)

    Google Scholar 

  37. M. H. Vingerhoeds, T. B. J. Blijdenstein, F. D. Zoet, G. A. van Aken, Food Hydrocoll 19(5), 915 (2005)

    Article  CAS  Google Scholar 

  38. J. Li, A. Ye, S. J. Lee, H. Singh, Food & Function 3(3), 320 (2012)

    Article  CAS  Google Scholar 

  39. R. Devraj, H. D. Williams, D. B. Warren, A. Mullertz, C. J. H. Porter, C. W. Pouton, Int J Pharm 441(1–2), 323 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material was partly based upon work supported by the USDA, NRI Grants (2011-03539, 2013-03795, 2011-67021, and 2014-67021). We also thank the National Aero and Space Administration (NASA) for partial funding of this research (NNX14AP32G). This project was also partly supported by the National Natural Science Foundation of China (NSFC31428017). This project was also partly funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant numbers 330-130-1435-DSR, 299-130-1435-DSR, 87-130-35-HiCi. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or David Julian McClements.

Additional information

Wei Liu and David Julian McClements contributed equally to this manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Zheng, B., Zhang, R. et al. Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions. Food Biophysics 11, 142–153 (2016). https://doi.org/10.1007/s11483-016-9425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9425-8

Keywords

Navigation