Skip to main content
Log in

Emulsification Capacity of Microgels Assembled from β-Lactoglobulin and Pectin

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Microgels formed from beta-lactoglobulin were used to prepare oil-in-water emulsions in order to examine their emulsifying capacity. Corn oil emulsions prepared with microgels of pure beta-lactoglobulin at pH 5.8 were initially stable, but a fraction of the droplets quickly flocculated to form a creamed layer that could not be dispersed by shear, which was attributed to hydrophobic attractions between the microgels on adjoining droplets. Emulsions prepared from microgels of beta-lactoglobulin and pectin at pH 4.75 possessed greater droplet sizes at lower concentrations, yet all emulsions were relatively stable to irreversible flocculation. Increased stability of emulsions stabilized by BP-gels was attributed to the presence of pectin on the surface of microgels, which increased repulsions between adjoining droplets. Stable corn oil emulsions were still prepared from microgels that were previously dialyzed to remove non-aggregated protein, which verified that the microgels were responsible for stabilizing emulsion droplets. Equilibrium surface pressure of corn oil droplets was similar between microgels and the unheated beta-lactoglobulin and pectin, yet the dynamic surface pressure was reduced at intermediate times and indicated a slow relaxation and deformation of the microgels at the interface. Microgels formed with pectin stabilized emulsions containing 90 % limonene for up to 5 days of room temperature storage, demonstrating the capacity of such protein microgels to stabilize flavor oil emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Blg:

β-lactoglobulin

B-gel:

Microgel assembled from thermal treatment of Blg at pH 5.8

BP-gel:

Microgel assembled from thermal treatment of Blg and pectin (2:1 wt:wt ratio) at pH 4.75

References

  1. L.Y. Chen, G.E. Remondetto, M. Subirade, Trends Food Sci. Technol. 17(5), 272–283 (2006)

    Article  CAS  Google Scholar 

  2. M.A. Augustin, Y. Hemar, Chem. Soc. Rev. 38(4), 902–912 (2009)

    Article  CAS  Google Scholar 

  3. D.J. McClements, E.A. Decker, J. Weiss, J. Food Sci. 72(8), R109–R124 (2007)

    Article  CAS  Google Scholar 

  4. D.J. McClements, Food Emulsions, 2nd edn. (CRC Press, Boca Raton, 2005), p. 609

    Google Scholar 

  5. E. Dickinson, J. Chem. Soc. Faraday Trans. 94(12), 1657–1669 (1998)

    Article  CAS  Google Scholar 

  6. P.J. Hailing, P. Walstra, Crit. Rev. Food Sci. Nutr. 15(2), 155–203 (1981)

    Article  Google Scholar 

  7. B.P. Binks, P.D.I. Fletcher, B.L. Holt, P. Beaussoubre, K. Wong, Langmuir 26(23), 18024–18030 (2010)

    Article  CAS  Google Scholar 

  8. J.W.J. de Folter, M.W.M. van Ruijven, K.P. Velikov, Soft Matter 8(25), 6807–6815 (2012)

    Article  Google Scholar 

  9. M.V. Tzoumaki, T. Moschakis, V. Kiosseoglou, C.G. Biliaderis, Food Hydrocoll. 25(6), 1521–1529 (2011)

    Article  CAS  Google Scholar 

  10. W. Ramsden, Proc. Roy. Soc. London 72(479), 156–164 (1903)

    Article  CAS  Google Scholar 

  11. S.U. Pickering, J. Chem. Soc. 91(0), 2001–2021 (1907)

    Article  Google Scholar 

  12. A.B. Pawar, M. Caggioni, R. Ergun, R.W. Hartel, P.T. Spicer, Soft Matter 7, 7710–7716 (2011)

    Article  CAS  Google Scholar 

  13. B.P. Binks, Curr. Opin. Colloid Interface Sci. 7(1–2), 21–41 (2002)

    Article  CAS  Google Scholar 

  14. H. Xu, S. Melle, K. Golemanov, G. Fuller, Langmuir 21(22), 10016–10020 (2005)

    Article  CAS  Google Scholar 

  15. S.S. Datta, H.C. Shum, D.A. Weitz, Langmuir 26(24), 18612–18616 (2010)

    Article  CAS  Google Scholar 

  16. S.O. Asekomhe, R. Chiang, J.H. Masliyah, J.A.W. Elliott, Ind. Eng. Chem. Res. 44(5), 1241–1249 (2005)

    Article  CAS  Google Scholar 

  17. N.P. Ashby, B.P. Binks, Phys. Chem. Chem. Phys. 2(24), 5640–5646 (2000)

    Article  CAS  Google Scholar 

  18. T. Ngai, S. H. Behrens and H. Auweter, Chem. Commun. (3), 331–333 (2005)

  19. M. Destribats, V. Lapeyre, M. Wolfs et al., Soft Matter 7(17), 7689–7698 (2011)

    Article  CAS  Google Scholar 

  20. B. Brugger, J. Vermant, W. Richtering, Phys. Chem. Chem. Phys. 12(43), 14573–14578 (2010)

    Article  CAS  Google Scholar 

  21. B.S. Murray, R. Ettelaie, Curr. Opin. Colloid Interface 9(5), 314–320 (2004)

    Article  CAS  Google Scholar 

  22. G. Shimoni, C. Shani Levi, S. Levi Tal, U. Lesmes, Food Hydrocoll. 33(2), 264–272 (2013)

    Article  CAS  Google Scholar 

  23. C. Schmitt, C. Bovay, A.-M. Vuilliomenet et al., Langmuir 25(14), 7899–7909 (2009)

    Article  CAS  Google Scholar 

  24. C. Schmitt, C. Moitzi, C. Bovay et al., Soft Matter 6(19), 4876–4884 (2010)

    Article  CAS  Google Scholar 

  25. T. Phan-Xuan, D. Durand, T. Nicolai, L. Donato, C. Schmitt, L. Bovetto, Langmuir 27(24), 15092–15101 (2011)

    Article  CAS  Google Scholar 

  26. O.G. Jones, D.J. McClements, Adv. Colloid Interf. Sci. 167(1–2), 49–62 (2011)

    Article  CAS  Google Scholar 

  27. O.G. Jones, D.J. McClements, J. Food Sci. 75(2), N36–N43 (2010)

    Article  CAS  Google Scholar 

  28. H. Salminen, J. Weiss, Food Hydrocoll. 35(0), 410–419 (2014)

    Article  CAS  Google Scholar 

  29. D.A. Kim, M. Cornec, G. Narsimhan, J. Colloid Interface Sci. 285(1), 100–109 (2005)

    Article  CAS  Google Scholar 

  30. J.M. Jung, G. Savin, M. Pouzot, C. Schmitt, R. Mezzenga, Biomacromolecules 9(9), 2477–2486 (2008)

    Article  CAS  Google Scholar 

  31. O.G. Jones, U. Lesmes, P. Dubin, D.J. McClements, Food Hydrocoll. 24(4), 374–383 (2010)

    Article  CAS  Google Scholar 

  32. N. Garti, M.E. Leser, Polym. Adv. Technol. 12(1–2), 123–135 (2001)

    Article  CAS  Google Scholar 

  33. S.R. Euston, S.R. Finnigan, R.L. Hirst, Food Hydrocoll. 14(2), 155–161 (2000)

    Article  CAS  Google Scholar 

  34. D. Guzey, D.J. McClements, J. Agric. Food Chem. 55(2), 475–485 (2006)

    Article  Google Scholar 

  35. Y.-H. Cho, D.J. McClements, Langmuir 25(12), 6649–6657 (2009)

    Article  CAS  Google Scholar 

  36. C.J. Beverung, C.J. Radke, H.W. Blanch, Biophys. Chem. 81(1), 59–80 (1999)

    Article  CAS  Google Scholar 

  37. R. Wustneck, J. Kragel, R. Miller et al., Food Hydrocoll. 10(4), 395–405 (1996)

    Article  Google Scholar 

  38. Z. Li, K. Geisel, W. Richtering, T. Ngai, Soft Matter 9(41), 9939–9946 (2013)

    Article  CAS  Google Scholar 

  39. Z. Du, M.P. Bilbao-Montoya, B.P. Binks, E. Dickinson, R. Ettelaie, B.S. Murray, Langmuir 19(8), 3106–3108 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding support from Hatch funds disbursed by the College of Agriculture at Purdue University. Special thanks go to Dr. Young-Hee Cho for helpful discussions that contributed to this manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerer, L., Jones, O.G. Emulsification Capacity of Microgels Assembled from β-Lactoglobulin and Pectin. Food Biophysics 9, 229–237 (2014). https://doi.org/10.1007/s11483-014-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9337-4

Keywords

Navigation