Skip to main content

Advertisement

Log in

Perspectives on Dual Targeting Delivery Systems for Brain Tumors

  • PERSPECTIVE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Brain tumor remains one of the most serious threats to human beings. Different from peripheral tumors, drug delivery to brain tumor is largely restricted by the blood brain barrier (BBB). To fully conquer this barrier and specifically deliver drugs to brain tumor, dual targeting delivery systems were explored, which are functionalized with two active targeting ligands: one to the BBB and the other to the brain tumor. The development of dual targeting delivery system is still in its early stage, and attentions need to be paid to issues and concerns that remain unresolved in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med 13:e17

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF (2013) Function of the blood–brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos 41:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avvakumova S, Colombo M, Tortora P, Prosperi D (2014) Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol 32:11–20

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302:822–827

    Article  CAS  PubMed  Google Scholar 

  • Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280

    Article  CAS  PubMed  Google Scholar 

  • Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  CAS  PubMed  Google Scholar 

  • Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, et al. (2014) Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 211:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruun J, Larsen TB, Jolck RI, Eliasen R, Holm R, Gjetting T, et al. (2015) Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNAto blood–brain barrier and glioma cells. Int J Nanomedicine 10:5995–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byeon HJ, Thao LQ, Lee S, Min SY, Lee ES, Shin BS, et al. (2016) Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release 225:301–313

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Chiang CF, Chen LF, Liang PC, Hsieh WY, Lin WL (2014) Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 35:4066–4081

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Cun X, Ruan S, Wang Y, Zhang Y, He Q, et al. (2015a) Glioma cell-targeting doxorubicin delivery and redox-responsive release using angiopep-2 decorated carbonaceous nanodots. RSC Adv 5:57045–57049

    Article  CAS  Google Scholar 

  • Chen W, Zheng R, Zeng H, Zhang S, He J (2015b) Annual report on status of cancer in China, 2011. Chin J Cancer Res 27:2–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi CH, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Davis ME (2015) Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A 112:12486–12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz LJ, Tacken PJ, Fokkink R, Figdor CG (2011) The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials 32:6791–6803

    Article  CAS  PubMed  Google Scholar 

  • Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Ding HM, Ma YQ (2012) Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials 33:5798–5802

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, et al. (2015) Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas. Mol Pharm 12:3250–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Lu WL, Ying X, Liu Y, Du P, Tian W, et al. (2009) Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood–brain barrier and survival of brain tumor-bearing animals. Mol Pharm 6:905–917

    Article  CAS  PubMed  Google Scholar 

  • Du D, Chang N, Sun S, Li M, Yu H, Liu M, et al. (2014) The role of glucose transporters in the distribution of p-aminophenyl-alpha-d-mannopyranoside modified liposomes within mice brain. J Control Release 182:99–110

    Article  CAS  PubMed  Google Scholar 

  • Farkas MH, Weisgraber KH, Shepherd VL, Linton MF, Fazio S, Swift LL (2004) The recycling of apolipoprotein E and its amino-terminal 22 kDa fragment: evidence for multiple redundant pathways. J Lipid Res 45:1546–1554

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, et al. (2015) Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces 7:27885–27899

    Article  CAS  PubMed  Google Scholar 

  • Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, et al. (1999) Gelatinase-a (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219

    Article  CAS  PubMed  Google Scholar 

  • Gao H, He Q (2014) The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv 11:409–420

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Jiang X (2015) Brain delivery using nanotechnology. In: Di Li and Edward HK (ed) Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effects, John Wiley & Sons, New York, pp 521–534

  • Gao H, Pan S, Yang Z, Cao S, Chen C, Jiang X, et al. (2011) A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 32:8669–8675

    Article  CAS  Google Scholar 

  • Gao H, Pang Z, Pan S, Cao S, Yang Z, Chen C, et al. (2012a) Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 35:333–341

    Article  Google Scholar 

  • Gao H, Qian J, Cao S, Yang Z, Pang Z, Pan S, et al. (2012b) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33:5115–5123

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. (2013a) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Report 3:2534

    Article  CAS  Google Scholar 

  • Gao H, Pang Z, Jiang X (2013b) Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res 30:2485–2498

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Cao S, Xiong Y, Zhang S, Pang Z, et al. (2014a) Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials 35:2374–2382

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wang Y, Chen C, Chen J, We Y, Cao S, et al. (2014b) Incorporation of lapatinib into core-shell nanoparticles improves both the solubility and anti-glioma effects of the drug. Int J Pharm 461:478–488

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X (2014c) RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm 11:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Zhang S, Pang Z, Liu Q, Jiang X (2014d) Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater 10:858–867

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X (2014e) Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11:2755–2763

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Zhang S, Pang Z, Jiang X (2014f) Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. J Drug Target 22:450–459

    Article  CAS  PubMed  Google Scholar 

  • Gorin F, Harley W, Schnier J, Lyeth B, Jue T (2004) Perinecrotic glioma proliferation and metabolic profile within an intracerebral tumor xenograft. Acta Neuropathol 107:235–244

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Chun X, Wang Y, He Q, Gao H (2015) Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget 6:41258–41274

    PubMed  PubMed Central  Google Scholar 

  • Huang WC, Burnouf PA, Su YC, Chen BM, Chuang KH, Lee CW, et al. (2016) Engineering chimeric receptors to investigate the size- and rigidity-dependent interaction of PEGylated nanoparticles with cells. ACS Nano

  • Ito S, Ohtsuki S, Terasaki T (2006) Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1-40) across the rat blood–brain barrier. Neurosci Res 56:246–252

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F″ ", et al. (2014) Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 35: 518–529.

  • Ke W, Shao K, Huang R, Han L, Liu Y, Li J, et al. (2009) Gene delivery targeted to the brain using an angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985

    Article  CAS  PubMed  Google Scholar 

  • Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H (2013) The effect of liposomal size on the targeted delivery of doxorubicin to integrin alphavbeta3-expressing tumor endothelial cells. Biomaterials 34:5617–5627

    Article  CAS  PubMed  Google Scholar 

  • Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A (2014) PEG - a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 192C:67–81

    Article  Google Scholar 

  • Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 110:10753–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson TA, Joshi PP, Sokolov K (2012) Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6:9182–9190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Ytreberg FM (2012) Effect of gold nanoparticle conjugation on peptide dynamics and structure. Entropy 14:630–641

    Article  CAS  Google Scholar 

  • Li H, Qian ZM (2002) Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 22:225–250

    Article  CAS  PubMed  Google Scholar 

  • Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, et al. (2011) Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32:4943–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, et al. (2014) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35:5591–5604

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, et al. (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35:4835–4847

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Wan J, She Z, Jiang X (2007) Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 118:38–53

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, et al. (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (London) 10:215–226

    Article  CAS  Google Scholar 

  • Maletinska L, Blakely EA, Bjornstad KA, Deen DF, Knoff LJ, Forte TM (2000) Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res 60:2300–2303

    CAS  PubMed  Google Scholar 

  • Mazzucchelli S, Colombo M, Verderio P, Rozek E, Andreata F, Galbiati E, et al. (2013) Orientation-controlled conjugation of Haloalkane dehalogenase fused homing peptides to multifunctional nanoparticles for the specific recognition of cancer cells. Angew Chem Int Ed 52:3121–3125

    Article  CAS  Google Scholar 

  • Mei L, Zhang Q, Yang Y, He Q, Gao H (2014) Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. Int J Pharm 474:95–102

    Article  CAS  PubMed  Google Scholar 

  • Mintz A, Gibo DM, Slagle-Webb B, Christensen ND, Debinski W (2002) IL-13Ralpha2 is a glioma-restricted receptor for interleukin-13. Neoplasia 4:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Kesharwani P. (2016) Dendrimer technologies for brain tumor. Drug Discov Today 21:766–78

  • Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, et al. (2014) Dual-targeting upconversion nanoprobes across the blood–brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano 8:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Owens R, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C, et al. (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128:120–127

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Peiris PM, Abramowski A, Mcginnity J, Doolittle E, Toy R, Gopalakrishnan R, et al. (2015) Treatment of invasive brain tumors using a chain-like nanoparticle. Cancer Res 75:1356–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, et al. (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Eng 49:8649–8652

    Article  CAS  Google Scholar 

  • Qosa H, Miller DS, Pasinelli P, Trotti D (2015) Regulation of ABC efflux transporters at blood–brain barrier in health and neurological disorders. Brain Res 1628:298–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan S, Zhang L, Chen J, Cao T, Yang Y, Liu Y, et al. (2015a) Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Adv 5:64303–64317

    Article  CAS  Google Scholar 

  • Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, et al. (2015b) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ruan S, Cao X, Cun X, Hu G, Zhou Y, Zhang Y, et al. (2015c) Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials 60:100–110

    Article  CAS  PubMed  Google Scholar 

  • Ruan S, He Q, Gao H (2015d) Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 7:9487–9496

    Article  CAS  PubMed  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  • Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM, Aronova MA, et al. (2009) Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med 7:51

  • Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    Article  CAS  PubMed  Google Scholar 

  • Shilo M, Sharon A, Baranes K, Motiei M, Lellouche JP, Popovtzer R (2015) The effect of nanoparticle size on the probability to cross the blood–brain barrier: an in-vitro endothelial cell model. J Nanomater 13:19

    Google Scholar 

  • Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, et al. (2012) Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33:916–924

    CAS  PubMed  Google Scholar 

  • Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. (2012) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29:770–781

    Article  CAS  PubMed  Google Scholar 

  • Tomitaka A, Arami H, Gandhi S, Krishnan KM (2015) Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7:16890–16898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valencia PM, Hanewich-Hollatz MH, Gao W, Karim F, Langer R, Karnik R, et al. (2011) Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 32:6226–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV (2013) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 65:1284–1298

    Article  PubMed  Google Scholar 

  • Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski V, et al. (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    CAS  PubMed  Google Scholar 

  • Wiley DT, Webster P, Gale A, Davis ME (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A 110:8662–8667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 108:2426–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Reiser M, Yu X, Gummuluru S, Wetzler RBM (2016) Lipid-mediated targeting with membrane-wrapped nanoparticles in the presence of corona formation. ACS Nano 2016(10):1189–1200

    Article  Google Scholar 

  • Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, et al. (2012) Two-order targeted brain tumor imaging by using an optical/paramagnetic Nanoprobe across the blood brain barrier. ACS Nano 6:410–420

    Article  CAS  PubMed  Google Scholar 

  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3: 44r-84r.

  • Zhan C, Lu W. (2012) The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol 13:2380–2387

  • Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, et al. (2016a) Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 469:86–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Li W, Meng G, Wang P, Liao W (2016b) Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 4:219–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81402866, 31571016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huile Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H. Perspectives on Dual Targeting Delivery Systems for Brain Tumors. J Neuroimmune Pharmacol 12, 6–16 (2017). https://doi.org/10.1007/s11481-016-9687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9687-4

Keywords

Navigation