Skip to main content
Log in

Improving Solar Cells’ Light Trapping by the Low Loss Interface Photonic Crystals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Improving the silicon layer’s optical absorption is a key research point for crystalline silicon based thin film solar cells. Light trapping is a method widely adopted to achieve this research purpose. In this paper, we propose low loss interface photonic crystals layer (IPC), which is sandwiched between the crystalline silicon layer and the cover layer. The low loss interface photonic crystals layer could boost the light trapping efficiency significantly. The mechanism is that the smaller refraction index difference between silicon layer and the low loss interface photonic crystals layer could reduce the light’s interface reflection. Taking advantage of the coupling calculation by optical and electrical simulations, solar cell’s absorption efficiency and electrical performance parameters are obtained. Compared with optimized reference group, the maximum output power of the proposed solar cell could be improved by 6.44%. The result indicates that the proposed low loss interface photonic crystals layer is applicable for light’s trapping in crystalline silicon thin film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar-cells. IEEE Trans Electron Devices 2:300–305. https://doi.org/10.1007/978-94-009-7898-0_76

    Article  Google Scholar 

  2. Green MA (1982) Solar cells: operating principles, technology and system applications. Prentice-Hall, Upple Saddle River

    Google Scholar 

  3. Green MA (1995) Silicon solar cells: advanced principle and practise. University of New South Wales, Sydney

    Google Scholar 

  4. Deckman HW, Roxlo CB, Yablonovitch E (1983) Maximum statistical increase of optical absorption in textured semi-conductor films. Opt Lett 9:491–493. https://doi.org/10.1364/Ol.8.000491

    Article  Google Scholar 

  5. Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 3:174–177. https://doi.org/10.1038/nmat3263

    Article  CAS  Google Scholar 

  6. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397. https://doi.org/10.1021/nl8022548

    Article  CAS  PubMed  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 10:865–865. https://doi.org/10.1038/nmat2866

    Article  CAS  Google Scholar 

  8. Min C, Li J, Veronis G, Lee JY, Fan S, Peumans P (2010) Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl Phys Lett 96(13):133302. https://doi.org/10.1063/1.3377791

    Article  CAS  Google Scholar 

  9. Shang A, Li X (2015) Carrier depletion and electrical optimization of gallium arsenide plasmonic solar cell with a rear metallic grating. Appl Phys Lett 106(5):051107. https://doi.org/10.1063/1.4907545

    Article  CAS  Google Scholar 

  10. Paetzold UW, Haase C, Stiebig H (2009) Localized Plasmonic effects at metal back contacts of thin-film silicon solar cells. Eur Photovoltaic Sol Energy Conf 24:2779–2783. https://doi.org/10.4229/24thEUPVSEC2009-3BV.4.10

    Article  Google Scholar 

  11. Paetzold UW, Hallermann F, Pieters BE, Rau U, Carius R, von Plessen G (2010) Localized plasmonic losses at metal back contacts of thin-film silicon solar cells. Proc SPIE 1:772517–772519. https://doi.org/10.1117/12.854430

    Article  CAS  Google Scholar 

  12. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271. https://doi.org/10.1364/AO.37.005271

    Article  PubMed  Google Scholar 

  13. Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92(11):1305–1310. https://doi.org/10.1016/j.solmat.2008.06.009

    Article  CAS  Google Scholar 

  14. Lin A, Zhong YK, Fu SM (2013) The effect of mode excitations on the absorption enhancement for silicon thin film solar cells. J Appl Phys 114(23):233104. https://doi.org/10.1063/1.4851817

    Article  CAS  Google Scholar 

  15. Awal MA, Ahmed Z, Talukder MA (2015) An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. J Appl Phys 6:83–91. https://doi.org/10.1063/1.4907873

    Article  CAS  Google Scholar 

  16. Zhang X, Knize RJ, Lu Y (2013) Enhanced light absorption in thin-film tandem solar cells using a bottom metallic nanograting. Appl Phys A Mater Sci Process 115(2):509–515. https://doi.org/10.1007/s00339-013-8075-7

    Article  CAS  Google Scholar 

  17. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018. https://doi.org/10.1021/nl904057p

    Article  CAS  PubMed  Google Scholar 

  18. Chen K, Wang Y, Zheng H, Wu R, Yu X (2017) Optical waveguide modes’ splitting by bi-layer silver gratings in thin film solar cells. Plasmonics 5:1581–1587. https://doi.org/10.1007/s1146

    Article  Google Scholar 

  19. Wang KX, Yu Z, Liu V, Cui Y, Fan S (2012) Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett 12(3):1616–1619. https://doi.org/10.1021/nl204550q

    Article  CAS  PubMed  Google Scholar 

  20. Brongersma ML, Cui Y, Fan S (2014) Light management for photovoltaics using high-index nanostructures. Nat Mater 5:451–460. https://doi.org/10.1038/nmat3921

    Article  CAS  Google Scholar 

  21. Born M, Wolf E (2003) Principles of optics, 7th. Cambridge University Press, London

    Google Scholar 

  22. Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J (2013) Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 7(10):791–795. https://doi.org/10.1038/nphoton.2013.214

    Article  CAS  Google Scholar 

  23. Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 7(11):907–912. https://doi.org/10.1038/nphoton.2013.256

    Article  CAS  Google Scholar 

  24. Huang X, Lai Y, Hang ZH, Zheng H, Chan CT (2011) Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater 8:582–586. https://doi.org/10.1038/nmat3030

    Article  CAS  Google Scholar 

  25. Xu Y, Chen H (2011) Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl Phys Lett 11:113501. https://doi.org/10.1063/1.3565172

    Article  CAS  Google Scholar 

  26. Zheng LY, Wu Y, Ni X, Chen ZG, Lu MH, Chen YF (2014) Acoustic cloaking by a near-zero-index phononic crystal. Appl Phys Lett 104(16):161904. https://doi.org/10.1063/1.4873354

    Article  CAS  Google Scholar 

  27. Li Y, Kita S, Muñoz P, Reshef O, Vulis DI, Yin M, Lončar M, Mazur E (2015) On-chip zero-index metamaterials. Nat Photonics 9(11):738–742. https://doi.org/10.1038/nphoton.2015.198

    Article  CAS  Google Scholar 

  28. Campione S, Albani M, Capolino F (2011) Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited]. Opt Mater Express 6:1077. https://doi.org/10.1364/OME.1.001077

    Article  CAS  Google Scholar 

  29. Yan W, Richards BS (2017) Potential of silicon phononic crystals for photovoltaic applications. IEEE J Photovoltaics 6:1503–1510. https://doi.org/10.1109/JPHOTOV.2017.2735024

    Article  Google Scholar 

  30. Sun G, Kirk AG (2007) On the relationship between Bloch modes and phase-related refractive index of photonic crystals. Opt Express 20:13149–13154. https://doi.org/10.1364/OE.15.013149

    Article  Google Scholar 

  31. Deceglie MG, Ferry VE, Alivisatos AP, Atwater HA (2012) Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett 6:2894–2900. https://doi.org/10.1021/nl300483y

    Article  CAS  Google Scholar 

  32. Rand BP, Genoe J, Heremans P, Poortmans J (2013) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 8:659–676. https://doi.org/10.1002/pip

    Article  Google Scholar 

  33. Treharne RE, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S, Lane D (2011) Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J Phys Conf Ser 1:012038. https://doi.org/10.1088/1742-6596/286/1/012038

    Article  CAS  Google Scholar 

  34. Chen K, Wang Y, Zheng H et al (2018) Optical absorption of thin film solar cells with hybrid arranged bottom grating. Plasmonics 13:815–823. https://doi.org/10.1007/s11468-017-0577-2

    Article  CAS  Google Scholar 

  35. Nelson J (2003) The physics of solar cells. Imperial College Press, London

    Book  Google Scholar 

  36. Li X, Hylton NP, Giannini V, Lee K-H, Ekins-Daukes NJ, Maier SA (2011) Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt Express S4:A888–A896. https://doi.org/10.1364/OE.19.00A888

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge support by the projects National Natural Science Foundation of China under Grant No. 51435003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Wang, Y., Wang, H. et al. Improving Solar Cells’ Light Trapping by the Low Loss Interface Photonic Crystals. Plasmonics 14, 335–346 (2019). https://doi.org/10.1007/s11468-018-0809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0809-0

Keywords

Navigation