Skip to main content
Log in

A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a high-performance refractive index sensor based on Fano resonance with a figure of merit (FOM) about 56.5 in all-dielectric metasurface which consists of a periodically arranged silicon rings with two equal splits dividing them into pairs of arcs of different lengths. A Fano resonance with quality factor ~133 and spectral contrast ratio ~100% arises from destructive interference of two antiphase electric dipoles in the two arcs of the split-ring. We can turn on and/or off the Fano resonance with a modulation depth nearly 100% at the operating wavelength of 1067 nm by rotating the polarization of incident light. We believe that our results will open up avenues for the development of applications using Fano resonance with dynamically controllability such as biochemical sensors, optical switching, and modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ugo F (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  Google Scholar 

  2. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

  3. Liu GD, Zhai X, Wang LL, Wang BX, Lin Q, Shang XJ (2016) Actively tunable Fano resonance based on a T-shaped graphene Nanodimer. Plasmonics 11:381–387

    Article  CAS  Google Scholar 

  4. Lin Q, Zhai X, Wang LL, Wang BX, Liu GD, Xia SX (2015) Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. Europhys Lett 111:34004

    Article  Google Scholar 

  5. Hu C, Wang LL, Lin Q, Zhai X, Ma XY, Han T, Du J (2016) Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure. Appl Phys Express 9:052001

    Article  Google Scholar 

  6. Xia SX, Zhai X, Wang LL, Sun B, Liu JQ, Wen SC (2016) Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt Express 24:17886–17899

    Article  Google Scholar 

  7. Liu SD, Yang Z, Liu RP, Li XY (2011) High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity. J Phys Chem C 115:24469–24477

    Article  CAS  Google Scholar 

  8. Fu YH, Zhang JB, Yu YF, Luk'yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    Article  CAS  Google Scholar 

  9. Zhang Q, Wen XL, Li GY, Ruan QF, Wang JF, Xiong QH (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7:11071

    Article  CAS  Google Scholar 

  10. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  11. Shi X, Han DZ, Dai YY, Yu ZF, Sun Y, Chen H, Liu XH, Zi J (2013) Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt Express 21:28438–28443

    Article  Google Scholar 

  12. Cheng H, Chen SQ, Yu P, Duan XY, Xie BY, Tian JG (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103:203112

    Article  Google Scholar 

  13. Ye J, Wen FF, Sobhani H, Lassiter JB, Dorpe PV, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667

    Article  CAS  Google Scholar 

  14. Verellen N, Dorpe PV, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchakov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  15. Chang WS, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12:4977–4982

    Article  CAS  Google Scholar 

  16. Zhang L, Dong ZG, Wang YM, Liu YJ, Zhang S, Yang JKW, Qiu CW (2015) Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. Nanoscale 7:12018–12022

    Article  CAS  Google Scholar 

  17. He JN, Wang JQ, Ding P, Fan CZ, Arnaut LR, Liang EJ (2015) Optical switching based on polarization tunable plasmon-induced transparency in disk/rod hybrid metasurfaces. Plasmonics 10:1115–1121

    Article  CAS  Google Scholar 

  18. Zhang JF, Lin W, Zhu ZH, Yuan XD, Qin SQ (2014) Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Opt Express 25:30889–30898

    Article  Google Scholar 

  19. Zhao WY, Jiang H, Liu BY, Jiang YY, Tang CC, Li JJ (2015) Fano resonance based optical modulator reaching 85% modulation depth. Appl Phys Lett 107:171109

    Article  Google Scholar 

  20. Zhao WY, Leng XD, Jiang YY (2015) Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning. Opt Express 23:6858–6966

    Article  CAS  Google Scholar 

  21. Muhammad N, Khan AD (2015) Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics 10:1687–1693

    Article  CAS  Google Scholar 

  22. Zhan Y, Lei DY, Li X et al (2014) Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale 6:4705–4715

    Article  CAS  Google Scholar 

  23. König M, Rahmani M, Zhang L et al (2014) Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers. ACS Nano 8:9188–9198

    Article  Google Scholar 

  24. Yong Z, Lei DY, Lam CH et al (2014) Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles. Nanoscale Res Lett 2014(9):1–6

    Google Scholar 

  25. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press, Boston, p 653

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505052, 61176116, 11074069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GD., Zhai, X., Wang, LL. et al. A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface. Plasmonics 13, 15–19 (2018). https://doi.org/10.1007/s11468-016-0478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0478-9

Keywords

Navigation