Skip to main content
Log in

Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS)

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Sub-10-nm gaps in noble metal bowtie structures may enable strong enhancement of the near field at the gap. However, it is challenging to define such small gaps using electron beam lithography (EBL) due to the proximity effect. Here, we circumvented this problem by carrying out EBL on a thin membrane that is transparent to incident electrons and thus free from the proximity effect. Nanogaps down to 6 nm were obtained and employed for sensing application based on surface-enhanced Raman scattering (SERS). We achieved a high sensitivity at low concentration of the target molecule with a SERS enhancement factor of 107.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J Raman Spectrosc 36(6–7):471–484

    Article  CAS  Google Scholar 

  2. Tian Z-Q, Ren B (2004) Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 55:197–229

    Article  CAS  Google Scholar 

  3. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  4. Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110(4):1944–1948

    Article  Google Scholar 

  5. Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B 104(50):11965–11971

    Article  CAS  Google Scholar 

  6. Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360

    Article  CAS  Google Scholar 

  7. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc 129(51):16249–16256

    Article  CAS  Google Scholar 

  8. Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  CAS  Google Scholar 

  9. Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130(38):12616–112617

    Article  CAS  Google Scholar 

  10. Moskovits M (2011) Imaging spot the hotspot. Nature 469:307–308

    Article  CAS  Google Scholar 

  11. Cang H, Labno A, Lu CG, Yin XB, Liu M, Gladden C, Liu YM, Zhang X (2001) Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469:385–388

    Article  Google Scholar 

  12. Hartschuh A, Anderson N, Novotny L (2003) Near-field Raman spectroscopy using a sharp metal tip. J Microsc (Oxf U K) 210:234–240

    Article  CAS  Google Scholar 

  13. Pazos-Perez N, Barbosa S, Rodriguez-Lorenzo L, Aldeanueva-Potel P, Perez-Juste J, Pastoriza-Santos I, Alvarez-Puebla RA, Liz-Marzan LM (2010) Growth of sharp tips on gold nanowires leads to increased surface-enhanced Raman scattering activity. J Phys Chem Lett 1(1):24–27

    Article  CAS  Google Scholar 

  14. Aldeanueva-Potel P, Carbo-Argibay E, Pazos-Perez N, Barbosa S, Pastoriza-Santos I, Alvarez-Puebla RA, Liz-Marzan LM (2012) Spiked gold beads as substrates for single-particle SERS. Chemphyschem 13(10):2561–2565

    Article  CAS  Google Scholar 

  15. Song HM, Deng L, Khashab NM (2013) Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. Nanoscale 5(10):4321–4329

    Article  CAS  Google Scholar 

  16. Cui B, Clime L, Li K, Veres T (2008) Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19(14):145302

    Article  CAS  Google Scholar 

  17. Hinde RJ, Sepaniak MJ, Compton RN, Nordling J, Lavrik N (2001) Surface-enhanced resonance Raman scattering of adsorbates under liquid nitrogen. Chem Phys Lett 339(3–4):167–173

    Article  CAS  Google Scholar 

  18. Speed JD, Johnson RP, Hugall JT, Lal NN, Bartlett PN, Baumberg JJ, Russell AE (2011) SERS from molecules bridging the gap of particle-in-cavity structures. Chem Commun 47:6335–6337

    Article  CAS  Google Scholar 

  19. Merk V, Kneipp J, Leosson K (2013) Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth. Adv Opt Mater 1(4):313–318

    Article  Google Scholar 

  20. Li K, Clime L, Cui B, Veres T (2008) Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology 19(14):145305

    Article  Google Scholar 

  21. Cui B, Veres T (2007) Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching. Microelectron Eng 84(5–8):1544–1547

    Article  CAS  Google Scholar 

  22. Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961

    Article  CAS  Google Scholar 

  23. Kinkhabwala A, Yu ZF, Fan SH, Avlasevich Y, Mullen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3:654–657

    Article  CAS  Google Scholar 

  24. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124(6):061101

    Article  Google Scholar 

  25. Zhang XY, Yonzon CR, Van Duyne RP (2006) Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res 21(5):1083–1092

    Article  CAS  Google Scholar 

  26. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  27. Geissler M, Li K, Cui B, Clime L, Veres T (2009) Plastic substrates for surface-enhanced Raman scattering. J Phys Chem C 113(40):17296–17300

    Article  CAS  Google Scholar 

  28. Kwon SH (2013) Plasmonic ruler with angstrom distance resolution based on double metal blocks. IEEE Photon Technol Lett 25(16):1619–1622

    Article  CAS  Google Scholar 

  29. Qin L, Zou S, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci U S A 103(36):13300–13303

    Article  CAS  Google Scholar 

  30. Hu M, Ou FS, Wu W, Naumov I, Li XM, Bratkovsky AM, Williams RS, Li ZY (2010) Gold nanofingers for molecule trapping and detection. J Am Chem Soc 132(37):12820–12822

    Article  CAS  Google Scholar 

  31. Hatab NA, Hsueh CH, Gaddis AL, Retterer ST, Li JH, Eres G, Zhang ZY, Gu BH (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10(12):4952–4955

    Article  CAS  Google Scholar 

  32. Dhawan A, Gerhold M, Vo-Dinh T (2007) Theoretical simulation and focused ion beam fabrication of gold nanostructures for surface-enhanced Raman scattering (SERS). Nanobiotechnol 3(3–4):164–171

    Article  CAS  Google Scholar 

  33. Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL (2011) Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22(18):185308

    Article  Google Scholar 

  34. Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L, Bao W, Ogletree DF, Schuck PJ, Cabrini S, Weber-Bargioni A (2013) Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. Nano Lett 13(6):2687–2691

    Article  CAS  Google Scholar 

  35. Chang THP (1975) Proximity effect in electron-beam lithography. J Vac Sci Technol 12:1271–1275

    Article  Google Scholar 

  36. Lee SY, Anbumony K (2006) Analysis of three-dimensional proximity effect in electron-beam lithography. Microelectron Eng 83(2):336–344

    Article  CAS  Google Scholar 

  37. Webster MN, Verbruggen AH, Romijn J, Jos HFF, Moors PMA, Radelaar S (1992) Proximity effect in high-voltage electron-beam lithography on Ti/Pt/Au metallization. Microelectron Eng 17(1–4):29–32

    Article  CAS  Google Scholar 

  38. IIs P, Michel M, Forchel A, Gyuro I, Speier P, Zielinski E (1994) Fabrication of ultrasmall InGaAs/InP nanostructures by high-voltage electron-beam lithography and wet chemical etching. Nato Adv Sci Inst Serv 264:77–80

    Google Scholar 

  39. Zhang J, Fouad M, Yavuz M, Cui B (2001) Charging effect reduction in electron beam lithography with nA beam current. Microelectron Eng 88(8):2196–2199

    Article  Google Scholar 

  40. Czaplewski DA, Holt MV, Ocola LE (2013) The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns. Nanotechnology 24(30):305302

    Article  Google Scholar 

  41. Frye RC, Rietman EA, Cummings KD (1990) Computation of proximity effect corrections in electron-beam lithography by a neural network. IEEE International Conference on Systems, Man, and Cybernetics: A7-A14

  42. Seo E, Kim O (2000) Dose and shape modification proximity effect correction for forward-scattering range scale features in electron beam lithography. Microprocesses and Nanotechnology, Digest of Papers: 158159

  43. Manheller M, Trellenkamp S, Waser R, Karthauser S (2012) Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography. Nanotechnology 23(12):125302

    Article  Google Scholar 

  44. Vial A, Laroche T (2007) Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method. J Phys D Appl Phys 40(22):7152

    Article  CAS  Google Scholar 

  45. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  46. Zuloaga J, Prodan E, Nordlander P (2009) Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9(2):887–891

    Article  CAS  Google Scholar 

  47. Savage JK, Hawkeye MM, Esteban R, Borisov GA, Aizpurua J, Baumberg JJ (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491:574–577

    Article  CAS  Google Scholar 

  48. Astilean S (2007) Noble-metal nanostructures for controlling surface plasmons and sensing molecules. Radiat Phys Chem 76(3):436–439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out using the nanofabrication facility at Quantum NanoFab funded by the Canada Foundation for Innovation, the Ontario Ministry of Research & Innovation, and Industry Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Irannejad, M. & Cui, B. Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS). Plasmonics 10, 831–837 (2015). https://doi.org/10.1007/s11468-014-9870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9870-5

Keywords

Navigation