Skip to main content
Log in

Nonlinear Plasmonics: Four-photon Near-field Photolithography using Optical Antennas

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recent experiments on four-photon nonlinear exposure of photoresist near nanoplasmonic structures raise a question: What nonlinear processes are responsible for the observed profile? Here, we study the nonlinear exposure of poly(methyl methacrylate) (PMMA) in the near-field of gold nanoantennas. We consider six possible nonlinear processes and study them in terms of the developed volumes and the exposure profiles in photoresist. We find that the direct fourth harmonic generation (4HG) in gold is the dominant nonlinear process. The developed volume from 4HG and the exposure profiles both match closely with the experiments. The next strongest process is direct four-photon absorption (4PA) in PMMA. The strength of 4PA process is about one order of magnitude weaker than 4HG. The developed volume and exposure profiles predicted from 4PA process clearly deviate from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5(2):83–90

    Article  CAS  Google Scholar 

  2. Ahmed A, Gordon R (2011) Directivity enhanced Raman spectroscopy using nanoantennas. Nano Lett 11(4):1800–1803

    Article  CAS  Google Scholar 

  3. Lee A, Andrade GF, Ahmed A, Souza ML, Coombs N, Tumarkin E, Liu K, Gordon R, Brolo AG, Kumacheva E (2011) Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman scattering. J Am Chem Soc 133(19):7563–7570

    Article  CAS  Google Scholar 

  4. Ahmed A, Gordon R (2012) Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett 12(5):2625–2630

    Article  CAS  Google Scholar 

  5. Zhu W, Wang D, Crozier KB (2012) Direct observation of beamed Raman scattering. Nano Lett 12(12):6235–6243

    Article  CAS  Google Scholar 

  6. Wang D, Zhu W, Chu Y, Crozier KB (2012) High directivity optical antenna substrates for surface enhanced Raman scattering. Adv Mater 24(32):4376–4380

    Article  CAS  Google Scholar 

  7. Lee A, Ahmed A, dos Santos DP, Coombs N, Park JI, Gordon R, Brolo AG, Kumacheva E (2012) Side-by-side assembly of gold nanorods reduces ensemble-averaged SERS intensity. J Phys Chem C 116(9):5538–5545

    Article  CAS  Google Scholar 

  8. Zamecnik CR, Ahmed A, Walters CM, Gordon R, Walker GC (2013) Surface-enhanced Raman spectroscopy using lipid encapsulated plasmonic nanoparticles and J-aggregates to create locally enhanced electric fields. J Phys Chem C 117(4):1879–1886

    Article  CAS  Google Scholar 

  9. Taminiau T, Stefani F, Segerink F, Van Hulst N (2008) Optical antennas direct single-molecule emission. Nat Photonics 2(4):234–237

    Article  CAS  Google Scholar 

  10. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3(11):654–657

    Article  CAS  Google Scholar 

  11. Kosako T, Kadoya Y, Hofmann HF (2010) Directional control of light by a nano-optical Yagi–Uda antenna. Nat Photonics 4(5):312–315

    Article  CAS  Google Scholar 

  12. Jiao X, Blair S (2012) Optical antenna design for fluorescence enhancement in the ultraviolet. Opt Express 20(28):29,909–29,922

    Article  CAS  Google Scholar 

  13. Kinkhabwala AA, Yu Z, Fan S, Moerner W (2012) Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas. Chem Phys 406:3–8

    Article  CAS  Google Scholar 

  14. Grigorenko A, Roberts N, Dickinson M, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2(6):365–370

    Article  CAS  Google Scholar 

  15. Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, Garcia de Abajo F, Quidant R (2009) Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett 9(10):3387–3391

    Article  CAS  Google Scholar 

  16. Zhang W, Huang L, Santschi C, Martin OJ (2010) Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett 10(3):1006–1011

    Article  Google Scholar 

  17. Pang Y, Gordon R (2011a) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11(9):3763–3767

    Article  CAS  Google Scholar 

  18. Pang Y, Gordon R (2011b) Optical trapping of a single protein. Nano Lett 12(1):402–406

    Article  Google Scholar 

  19. Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70(11):1354–1356

    Article  CAS  Google Scholar 

  20. Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban JJ, Pang Y, Gordon R, Bokor J, Salmeron MB, Ogletree DF, Ashby P, Cabrini S, Schuck PJ (2011) Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes. Nano Lett 11(3):1201–1207

    Article  CAS  Google Scholar 

  21. Mühlschlegel P, Eisler HJ, Martin O, Hecht B, Pohl D (2005) Resonant optical antennas. Sci 308(5728):1607–1609

    Article  Google Scholar 

  22. Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nat 453(7196):757–760

    Article  CAS  Google Scholar 

  23. Hanke T, Krauss G, Träutlein D, Wild B, Bratschitsch R, Leitenstorfer A (2009) Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys Rev Lett 103(25):257,404

    Article  CAS  Google Scholar 

  24. Harutyunyan H, Volpe G, Quidant R, Novotny L (2012) Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys Rev Lett 108(21):217,403

    Article  Google Scholar 

  25. Thyagarajan K, Rivier S, Lovera A, Martin OJ (2012) Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express 20:12,860–12,865

    Article  Google Scholar 

  26. Aouani H, Navarro-Cia M, Rahmani M, Sidiropoulos T, Hong M, Oulton R, Maier SA (2012) Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett 12(9):4997–5002

    Article  CAS  Google Scholar 

  27. Hajisalem G, Ahmed A, Pang Y, Gordon R (2012) Plasmon hybridization for enhanced nonlinear optical response. Opt Express 20(28):29,923–29,930

    Article  CAS  Google Scholar 

  28. Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner W (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6(3):355–360

    Article  CAS  Google Scholar 

  29. Murazawa N, Ueno K, Mizeikis V, Juodkazis S, Misawa H (2009) Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods. J Phys Chem C 113(4):1147–1149

    Article  CAS  Google Scholar 

  30. Galarreta BC, Rupar I, Young A, Lagugné-Labarthet F (2011) Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films. J Phys Chem C 115(31):15,318–15,323

    Article  CAS  Google Scholar 

  31. Volpe G, Noack M, Acimovic SS, Reinhardt C, Quidant R (2012) Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate). Nano Lett 12(9):4864–4868

    Article  CAS  Google Scholar 

  32. Hillenbrand R, Keilmann F, Hanarp P, Sutherland D, Aizpurua J (2003) Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett 83(2):368–370

    Article  CAS  Google Scholar 

  33. Imura K, Nagahara T, Okamoto H (2004) Plasmon mode imaging of single gold nanorods. J Am Chem S 126(40):12730–12731

    Article  CAS  Google Scholar 

  34. Esteban R, Vogelgesang R, Dorfmüller J, Dmitriev A, Rockstuhl C, Etrich C, Kern K (2008) Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett 8(10):3155–3159

    Article  CAS  Google Scholar 

  35. Schnell M, Garcia-Etxarri A, Huber AJ, Crozier KB, Borisov A, Aizpurua J, Hillenbrand R (2010) Amplitude-and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. J Phys Chem C 114(16):7341–7345

    Article  CAS  Google Scholar 

  36. Mastel S, Grefe S, Cross G, Taber A, Dhuey S, Cabrini S, Schuck P, Abate Y (2012) Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading. Appl Phys Lett 101(13):131,102

    Article  Google Scholar 

  37. Chu MW, Myroshnychenko V, Chen CH, Deng JP, Mou CY (2008) Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9(1):399–404

    Article  Google Scholar 

  38. Hohenester U, Ditlbacher H, Krenn JR (2009) Electron-energy-loss spectra of plasmonic nanoparticles. Phys Rev Lett 103(10):106,801

    Article  Google Scholar 

  39. Koh AL, Fernádez-Domíguez AI, McComb DW, Maier SA, Yang JK (2011) High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 11(3):1323–1330

    Article  CAS  Google Scholar 

  40. Mohammadi Z, Van Vlack CP, Hughes S, Bornemann J, Gordon R (2012) Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons. Opt Express 20(14):15,024–15,034

    Article  CAS  Google Scholar 

  41. Higgins DA, Everett TA, Xie A, Forman SM, Ito T (2006) High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films. Appl Phys Lett 88(18):184,101

    Article  Google Scholar 

  42. Srinivasan R, Braren B, Seeger D, Dreyfus R (1986) Photochemical cleavage of a polymeric solid: details of the ultraviolet laser ablation of poly(methyl methacrylate) at 193 nm and 248 nm. Macromol 19(3):916–921

    Article  CAS  Google Scholar 

  43. Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51(16):1285–1287

    Article  CAS  Google Scholar 

  44. Zeng Y, Hoyer W, Liu J, Koch SW, Moloney JV (2009) Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79(23):235,109

    Article  Google Scholar 

  45. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley

  46. Deeb C, Zhou X, Miller R, Gray SK, Marguet S, Plain J, Wiederrecht GP, Bachelot R (2012) Mapping the electromagnetic near-field enhancements of gold nanocubes. J Phys Chem C 116(46):24,734–24,740

    Article  CAS  Google Scholar 

  47. Tsang T, Srinivasan-Rao T, Fischer J (1991) Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys Rev B 43:8870–8878

    Article  CAS  Google Scholar 

  48. Girardeau-Montaut J, Girardeau-Montaut C (1995) Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. Phys Rev B 13(19):13560

    Google Scholar 

  49. Taflove A, Hagness SC (2000) Computational electrodynamics. Artech house Boston London

  50. Varró S, Ehlotzky F (1994) Higher-harmonic generation from a metal surface in a powerful laser field. Phys Rev A 49(4):3106–3109

    Article  Google Scholar 

  51. Georges AT (1996) Coherent and incoherent multiple-harmonic generation from metal surfaces. Phys Rev A 54(3):2412–2418

    Article  CAS  Google Scholar 

  52. Georges AT, Karatzas NE (2005) Theory of multiple harmonic generation in reflection from a metal surface. Appl Phys B: Lasers Opt 81(4):479–485

    Article  CAS  Google Scholar 

  53. Papadogiannis N, Loukakos P, Moustaizis S (1999) Observation of the inversion of second and third harmonic generation efficiencies on a gold surface in the femtosecond regime. Opt Commun 166(1):133–139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by MITACS Elevate program. All FDTD simulations were completed using Lumerical FDTD Solutions (version 8.5). Hao Jiang would like to acknowledge technical support from Chris Kopetski and James Pond at Lumerical Inc..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Gordon.

Appendix: FDTD Simulations

Appendix: FDTD Simulations

FDTD is a time domain simulation method to solve the Maxwell’s equations [49]. We implemented FDTD to calculate the near-field profile for all the processes using Lumerical FDTD Solutions (version 8.5). Our target is to obtain the intensity profile of all frequencies that may participate in the studied nonlinear process, i.e., \(I_{\mathrm FF}(\mathbf {r})\) for \(\omega _{0}\), \(I_{\mathrm 2HG}(\mathbf {r})\) for \(2\omega _{0}\), \(I_{\mathrm 3HG}(\mathbf {r})\) for \(3\omega _{0}\), and \(I_{\mathrm 4HG}(\mathbf {r})\) for \(4\omega _{0}\). For conveniently calculating exposure dose for varying laser power, we carried out frequency domain normalization in each simulation to obtain the field profile excited by a continuous harmonic wave with constant intensity \(I_{0}=1\times 10^{10}~{\mathrm W/cm^{2}}\) and \(\lambda =860~{\mathrm nm}\). Then the intensity for different laser powers can be scaled and the exposure dose can be calculated according to Table 1. Our fundamental methodology to simulate the nonlinear processes is: we first simulate the linear response, obtain the first-order field and calculate the higher-order nonlinear source terms; then we launch the source terms as electric dipoles in a second simulation and normalize the simulated field intensity properly. In the following, we present the details of calculating each nonlinear process.

Simulations for Process (I): Direct 4PA

To calculate the exposure dose under 4PA process in PMMA, we only need to simulate the linear response of gold nanoantennas. Through Fourier transform and source normalizations, we obtained the complex electric field \(\tilde {\textbf {E}}{^{(1)}}(\textbf {r})\) for fundamental frequency \(\omega _{0}\), where the superscript (1) represents the first order, i.e., linear response. The corresponding harmonic field in time domain is expressed as

$$\mathbf{E}^{(1)}(\mathbf{r},t)=\tilde{\mathbf{E}}^{(1)}(\mathbf{r})e^{-i\omega_{0}t}+c.c. $$
(18)

Under this convention, the amplitude of the harmonic field is \(|2\tilde {\textbf {E}}^{(1)}(\textbf {r})|\) and the intensity profile \(I_{\mathrm FF}(\textbf {r})=2n\epsilon _{0}c|\tilde {\textbf {E}}^{(1)}(\textbf {r})|^{2}\), where n is the refractive index of the photoresist.

Simulations for Process (II): Direct 4HG

Due to the inversion symmetry inside the bulk gold, the fourth-order nonlinear susceptibility \(\chi ^{(4)}\) is zero in dipole approximation. However, the symmetry breaks at the surface potential of the gold and multiple harmonics can be generated from the gold surface [5052]. To simulate the 4HG from the gold surface, we first obtained the linear field \(\tilde {\textbf {E}}^{(1)}(\textbf {r})\) and then launched electric field dipole sources (center frequency \(4\omega _{0}\)) on the computational nodes located at the metal–dielectric boundary.

The nonlinear complex electric field dipole source is calculated by

$$ \tilde{E}_{\mathrm s\bot}^{(4)}(4\omega_{0})=\frac{\chi^{(4)}\left(\tilde{E}_{\bot}^{(1)}\right)^{4}}{\epsilon(4\omega_{0})-1}, $$
(19)

where the subscript \(\mathrm \bot \) denotes the component that is at the interface and perpendicular to the surface. Because all the surfaces of gold antenna were meshed into staircase in FDTD simulations, \(\mathrm \bot \) could be x, y, or z, as shown in Fig. 7. The time domain electric dipoles were launched with amplitude and phase angle determined from \(\tilde {E}_{\mathrm s\bot }^{(4)}(4\omega _{0})\).

Fig. 7
figure 7

Configurations of electric dipole sources on the boundary nodes for calculating the direct 4HG from gold surface. Because all the curvature of the rod was meshed into staircase shape in FDTD, the field components normal to the surface is pointing to the x, y or z direction. The polarization of each dipole has to be consistent with the field component at that node in the Yee’s cell configuration [49]. For example, the x-polarized dipole has to be added on the node point from which FDTD calculates \(E_{x}\)

In order to estimate the value of \(\chi ^{(4)}\), we used our approach to simulate the 4HG excited by laser pulses on a planar gold surface. According to the theoretical results by Georges et al. [52], a peak intensity of \(1\times 10^{10}~{\mathrm W/cm}^{2}\) can produce 4HG intensity about \(10^{-1}~{\mathrm W/cm}^{2}\). We simulated the intensity of the reflected 4HG wave, compared our results to the theoretical results, and determined \(\chi ^{(4)}=9.44\times 10^{-25}~{\mathrm m^{3}/V^{3}}\) for a 2-nm mesh.

Simulations for Process (III) and (IV)

Process (III) and (IV) are both two-step nonlinear processes to produce a 4HG photons. In process (III), two steps of 2HG produce 215-nm photons. In process (IV), one step of 3HG followed by one step of SFG produce 215-nm photons. We calculated both processes using hydrodynamic Drude model, following the approaches given by Zeng et al. [44].

Maxwell’s equations for hydrodynamic Drude model:

$$\begin{array}{rll} \frac{\partial{\mathbf{B}}}{\partial{t}}&=&-\nabla\times\mathbf{E}\notag\\ \frac{\partial{\mathbf{E}}}{\partial{t}}&=&c^{2}\nabla\times\mathbf{B}-\frac{\mathbf{J}}{\epsilon_{0}}\notag\\ \rho&=&\epsilon_{0}\nabla\cdot\mathbf{E}\notag\\ \frac{\partial{\mathbf{J}}}{\partial{t}}&=&\frac{e^{2}n_{0}}{m}\mathbf{E}-\gamma\mathbf{J}+\sum\limits_{k}\frac{\partial}{\partial r_{k}}\left(\frac{\mathbf{J}J_{k}}{en_{0}-\rho}\right)\notag\\ &&-\frac{e}{m}\big[\rho\mathbf{E}+\mathbf{J}\times\mathbf{B}\big]\notag \end{array} $$

\(\omega _{p}^{2}=\frac {e^{2}n_{0}}{m\epsilon _{0}}\) where \(\omega _p=1.367\times 10^{16}~{\mathrm s}^{-1}\) is the bulk plasma frequency and the damping frequency \(\gamma =6.478\times 10^{13}~{\mathrm s}^{-1}\) [44].

The hydrodynamic Drude model contains nonlinear equations which are linearized by perturbative expansions

$$ \mathbf{E}=\sum\limits_{j}\mathbf{E}^{(j)} $$
(20)
$$ \mathbf{B}=\sum\limits_{j}\mathbf{B}^{(j)}$$
(21)
$$ \mathbf{J}=\sum\limits_{j}\mathbf{J}^{(j)} $$
(22)
$$ \rho=\epsilon_{0}\sum\limits_{j}{\nabla\cdot\mathbf E}^{(j)} $$
(23)

where the superscript (j) indicates the field of the jth order.

The first-order equations are the local Drude model which can be directly simulated in FDTD simulations, given as

$$ \frac{\partial \mathbf{B}^{(1)}}{\partial t}=-\nabla\times\mathbf{E}^{(1)} $$
(24)
$$ \frac{\partial\mathbf{E}^{(1)}}{\partial t}=c^{2}\nabla\times\mathbf{B}^{(1)}-\frac{\mathbf{J}^{(1)}}{\epsilon_{0}} $$
(25)
$$ \frac{\partial{\mathbf{J}^{(1)}}}{\partial{t}}=\frac{e^{2}n_{0}}{m}\mathbf{E}^{(1)}-\gamma\mathbf{J}^{(1)} $$
(26)

The second-order equations are given by

$$ \frac{\partial \mathbf{B}^{(2)}}{\partial t}=-\nabla\times\mathbf{E}^{(2)} $$
(27)
$$ \frac{\partial\mathbf{E}^{(2)}}{\partial t}=c^{2}\nabla\times\mathbf{B}^{(2)}-\frac{\mathbf{J}^{(2)}}{\epsilon_{0}} $$
(28)
$$ \begin{array}{rll} \frac{\partial{\mathbf{J}^{(2)}}}{\partial{t}}&=&\frac{e^{2}n_{0}}{m}\mathbf{E}^{(2)}-\gamma\mathbf{J}^{(2)}+\mathbf{S}^{(2)}\\ \mathbf{S}^{(2)}&=&\sum\limits_{k}\frac{\partial}{\partial r_{k}}\left(\frac{\mathbf{J}^{(1)}J_{k}^{(1)}}{en_{0}}\right)-\frac{e}{m} \end{array}$$
(29)
$$ \times \big[\epsilon_{0}(\nabla\cdot\mathbf{E}^{(1)})\mathbf{E}^{(1)}+\mathbf{J}^{(1)}\times\mathbf{B}^{(1)}\big] $$
(30)

where subscript k represents the x, y, and z coordinates. \(\mathbf {S}^{(2)}\) is the nonlinear source term driving the second-order response. From Eq. 30, we calculated the complex electric field dipole source for the 2HG to be

$$\begin{array}{rll} \tilde{\mathbf{E}}_{\mathrm{s}}^{(2)}(2 \omega_{0})&=& {} \frac{\tilde{\mathbf{S}}^{(2)}(2\omega_{0})}{{\epsilon_{0}}{\omega_{p}^{2}}} \notag\\ &=& {} -\frac{\epsilon_{0}}{en_{0}} {} \left\{\left[1+\frac{\omega_{p}^{2}}{(\omega_{0}+i\gamma)^{2}}\right] \left[\left(\nabla\cdot\tilde{\mathbf{E}}^{(1)}\right)\tilde{\mathbf{E}}^{(1)}\right]\right.\notag\\ && {\kern2.5pc} \left.+{} \frac{\omega_{p}^{2}}{2\omega_{0}(\omega_{0}+i\gamma)}\nabla\left(\tilde{\mathbf{E}}^{(1)}\cdot\tilde{\mathbf{E}}^{(1)}\right) {} \right\} \end{array} $$
(31)

In process (III), the first step of 2HG is calculated by launching the time domain electric dipole sources according to \(\tilde {\textbf {E}}_{\mathrm s}^{(2)}(2\omega _{0})\) at all computational nodes inside gold.

The fourth-order equations are given by

$$ \frac{\partial \textbf{B}^{(4)}}{\partial t}=-\nabla\times\textbf{E}^{(4)} $$
(32)
$$ \frac{\partial\textbf{E}^{(4)}}{\partial t}=c^{2}\nabla\times\textbf{B}^{(4)}-\frac{\textbf{J}^{(4)}}{\epsilon_{0}} $$
(33)
$$ \frac{\partial{\textbf{J}^{(4)}}}{\partial{t}}=\frac{e^{2}n_{0}}{m}\textbf{E}^{(4)}-\gamma\textbf{J}^{(4)}+\textbf{S}_{1}^{(4)}+\textbf{S}_{2}^{(4)} $$
(34)
$$\begin{array}{rll} \textbf{S}_{1}^{(4)}&=&\sum\limits_{k}\frac{\partial}{\partial r_{k}}\left(\frac{\textbf{J}^{(2)}J_{k}^{(2)}}{en_{0}}\right)\\ &&-\frac{e}{m}\left[\epsilon_{0}\left(\nabla\cdot\textbf{E}^{(2)}\right)\textbf{E}^{(2)} +\textbf{J}^{(2)}\times\textbf{B}^{(2)}\right] \end{array} $$
(35)
$$\begin{array}{rll} \textbf{S}_{2}^{(4)}&=& \sum\limits_{k}\frac{\partial}{\partial r_{k}}\left(\frac{\textbf{J}^{(1)}J_{k}^{(3)}+\textbf{J}^{(3)}J_{k}^{(1)}}{en_{0}}\right)\\ &&-\frac{e}{m}\left[\epsilon_{0}\left(\nabla\cdot\textbf{E}^{(1)}\right)\right.\textbf{E}^{(3)}+\epsilon_{0}\left(\nabla\cdot\textbf{E}^{(3)}\right)\textbf{E}^{(1)}\\ &&\left. \qquad \quad +\textbf{J}^{(1)}\times\textbf{B}^{(3)}+\textbf{J}^{(3)}\times\textbf{B}^{(1)}\right] \end{array} $$
(36)

There are two nonlinear source terms: \(\textbf {S}_{1}^{(4)}\) describes 2HG of two 2HG photons in process (III); \(\textbf {S}_{2}^{(4)}\) describes the sum frequency generation of one FF photon and one 3HG photon in process (IV). From Eqs. 35 and 36, we calculated the complex electric field dipole source for the two processes, respectively.

$$\begin{array}{rll} \tilde{\textbf{E}}_{\mathrm s1}^{(4)}(4\omega_{0})&=&\frac{\tilde{\textbf{S}}_{1}^{(4)}(4\omega_{0})}{\epsilon_{0}\omega_{p}^{2}}= -\frac{\epsilon_{0}}{en_{0}}\\ &&\left\{\left[1+\frac{\omega_{p}^{2}}{(2\omega_{0}+i\gamma)^{2}}\right]\left[\left(\nabla \cdot\tilde{\textbf{E}}^{(2)}\right)\tilde{\textbf{E}}^{(2)}\right]\right. \\ &&\left. {\kern5pt} +\frac{\omega_{p}^{2}}{4\omega_{0}(2\omega_{0}+i\gamma)}\nabla\left(\tilde{\textbf{E}}^{(2)} {} \cdot\tilde{\textbf{E}}^{(2)}\right)\right\} \end{array} $$
(37)
$$\begin{array}{rll} \tilde{\textbf{E}}_{\textrm s2}^{(4)}(4\omega_{0}) {} &=& {} \frac{\tilde{\textbf{S}}_{2}^{(4)}(4\omega_{0})}{\epsilon_{0}\omega_{p}^{2}} \\ &=& {} - {} \frac{\epsilon_{0}}{en_{0}} {} \left\{ {} \left[1\,+\,\frac{\omega_{p}^{2}}{(\omega_{0}+i\gamma)(3\omega_{0}+i\gamma)}\right] \right. \\ &&\qquad \quad\left[\left(\nabla\cdot\tilde{\textbf{E}}^{(1)}\right)\tilde{\textbf{E}}^{(3)}\,+\,\left(\nabla\cdot\tilde{\textbf{E}}^{(3)}\right)\tilde{\textbf{E}}^{(1)}\right] \\ &&\left. \qquad \quad+\frac{\omega_{p}^{2}}{(\omega_{0}\,+\,i\gamma)(3\omega_{0}\,+\,i\gamma)}\nabla {} \left(\tilde{\textbf{E}}^{(1)} {} \cdot {} \tilde{\textbf{E}}^{(3)}\right) {} \right\}\\ \end{array} $$
(38)

To calculate the second step of 2HG in process (III), time domain electric dipole sources (center frequency \(4\omega _{0}\)) are launched according to \(\tilde {\textbf {E}}_{\mathrm s1}^{(4)}(4\omega _{0})\) given in Eq. 37.

The source terms in Eq. 38 also require third-order field \(\tilde {\textbf {E}}^{(3)}\) and we implemented the third-order nonlinear susceptibility \(\chi ^{(3)}\) directly into the Lumerical FDTD Solutions “\(\chi ^{(2)}/\chi ^{(3)}\)” model by adding the nonlinear third-order polarization \(\textbf {P}^{(3)}\) to the linear material model

$$ P_{k}^{(3)}=\epsilon_{0}\chi^{(3)}\left(E_{k}^{(1)}\right)^{3}, $$
(39)

where subscript k represents the x, y, and z coordinates, \(\chi ^{(3)}=7.56\times 10^{-19}~{\mathrm m}^{2}/{\mathrm V}^{2}\), according to Ref. [44].

To calculate the second step nonlinear process in (IV), time domain electric dipole sources (center frequency \(4\omega _{0}\)) are launched according to \(\tilde {\textbf {E}}_{\mathrm s2}^{(4)}(4\omega _{0})\) given in Eq. 38.

Simulations for Process (V)

For process (V), we need to calculate the intensity profile of the 2HG, \(I_{\mathrm 2HG}(\mathbf {r})\). We have applied two models to calculate 2HG: (1) hydrodynamic Drude model, according to Eq. 31; and (2) nonlinear surface \(\chi ^{(2)}\) model. The surface \(\chi ^{(2)}\) model was implemented in the similar way as the surface \(\chi ^{(4)}\) model used in Section “Simulations for Process (II): Direct 4HG.” \(\chi ^{(2)}=7.11\times 10^{-9}~{\mathrm m/V}\) was determined by simulating a planar gold surface and comparing the simulated 2HG intensity with the experiments and theories [52, 53]. Figure 8 compares the developed volume calculated from both models. Since the volume is slightly larger in the hydrodynamic Drude model, we followed the hydrodynamic Drude model when comparing the processes in Fig. 3.

Fig. 8
figure 8

The developed volume around gap antenna calculated from hydrodynamic Drude (HD) model and the surface \(\chi ^{(2)}\) model. The curve calculated from the two models are very close to each other. Hydrodynamic Drude model was used in the article

Simulations for Process (VI)

For process (VI), we need to calculate the intensity profile of the fundamental frequency following the method in Section “Simulations for Process (II): Direct 4HG” and the third-order field as described in Section “Simulations for Process (III) and (IV).”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Gordon, R. Nonlinear Plasmonics: Four-photon Near-field Photolithography using Optical Antennas. Plasmonics 8, 1655–1665 (2013). https://doi.org/10.1007/s11468-013-9584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9584-0

Keywords

Navigation