Skip to main content
Log in

Spectrally-Tunable Directionality of Compact Optical Nanoantennas

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a novel design of plasmonic compact nanoantenna with an efficiently engineered spectral response for the directive emission or harvesting of light. The nanoantenna comprised of four gold nanodisks, arranged longitudinally, and appropriately spaced. Interestingly, by tuning of the inter-particle distances, it is found that the proposed nanoantenna shows either dual-band or broad-band unidirectional performances. These remarkable spectral effects are due to the tailored energies of the two hybridized out-of-phase LSPR modes and the intrinsic electromagnetic interactions. The theoretical predictions are obtained based on the modified coupled-dipole approximation method. In order to obtain more accurate theoretical results, the primary incident optical field seen by the smaller nanodisks are modified by taking into account the field-enhancement caused by the excited plasmons in the largest nanodisk when it is illuminated first. The theoretical results are confirmed by the electromagnetic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–484

    Article  Google Scholar 

  2. Alu A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photon 2:307–310

    Article  CAS  Google Scholar 

  3. Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930–933

    Article  CAS  Google Scholar 

  4. Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007) Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33

    Article  CAS  Google Scholar 

  5. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002

    Article  CAS  Google Scholar 

  6. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95:017402

    Article  CAS  Google Scholar 

  7. Kühn S, Håkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402

    Article  Google Scholar 

  8. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3:654–657

    Article  CAS  Google Scholar 

  9. Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331

    Article  CAS  Google Scholar 

  10. Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420

    Article  Google Scholar 

  11. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  CAS  Google Scholar 

  12. Kühn S, Mori G, Agio M, Sandoghdar V (2008) Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching. Mol Phys 106:893–908

    Article  Google Scholar 

  13. Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon DS, Saraswat KC, Miller DAB (2008) Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photon 2:226–229

    Article  CAS  Google Scholar 

  14. Cao LY, Park JS, Fan PY, Clemens B, Brongersma ML (2010) Resonant germanium nanoantenna photodetectors. Nano Lett 10:1229–1233

    Article  CAS  Google Scholar 

  15. Kosako T, Kadoya Y, Hofmann HF (2010) Directional control of light by a nano-optical Yagi–Uda antenna. Nat Photonics 4:312–315

    Article  CAS  Google Scholar 

  16. Pakizeh T, Käll M (2009) Unidirectional ultracompact optical nanoantennas. Nano Lett 9:2343–2349

    Article  CAS  Google Scholar 

  17. Alavi-Lavasani SH, Pakizeh T (2012) Color-switched ultracompact optical nanoantennas. J Opt Soc Am B 29:1361–1366

    Article  CAS  Google Scholar 

  18. Pakizeh T (2012) Unidirectional radiation of a magnetic-dipole coupled to an ultracompact optical nanoantennas. J Opt Soc Am B 29:2446–2452

    Article  CAS  Google Scholar 

  19. Dorfmüller J, Dregely D, Eßlinger M, Khunsin W, Vogelgesang R, Kern K, Giessen H (2011) Near-field dynamics of optical Yagi–Uda nanoantennas. Nano Lett 11:2819–2824

    Article  Google Scholar 

  20. Ȕnlȕ ES, Umut Tok R, Șendur K (2011) Broadband plasmonic nanoantenna with an adjustable spectral response. Opt Express 19:1000–1006

    Article  Google Scholar 

  21. Navarro-Cia M, Maier SA (2012) Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 6:3537–3544

    Article  CAS  Google Scholar 

  22. Shegai T, Miljković VD, Bao K, Xu H, Nordlander P, Johansson P, Käll M (2011) Unidirectional broadband light emission from supported plasmonic nanowire. Nano Lett 11:706–711

    Article  CAS  Google Scholar 

  23. Ko KD, Kumar A, Fung KH, Ambekar R, Liu GL, Fang NX, Toussaint KC (2011) Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett 11:61–65

    Article  CAS  Google Scholar 

  24. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  25. Pakizeh T, Dmitriev A, Abrishamian MS, Granpayeh N, Käll M (2008) Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. J Opt Soc Am B 25:659–667

    Article  CAS  Google Scholar 

  26. Yang WH, Schatz GC, van Duyne RP (1995) Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 103:869

    Article  CAS  Google Scholar 

  27. Kelly LK, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  28. Born M, Wolf E (1999) Principles of optics. Cambridge University, Cambridge

    Book  Google Scholar 

  29. CST Microwave Studio, http://www.cst.com. Accessed 12 Apr 2010

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tavakol Pakizeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouri, H., Pakizeh, T. Spectrally-Tunable Directionality of Compact Optical Nanoantennas. Plasmonics 8, 1633–1641 (2013). https://doi.org/10.1007/s11468-013-9581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9581-3

Keywords

Navigation