Skip to main content
Log in

Effects of Dielectric Anisotropy on Surface Plasmon Polaritons in Three-Layer Plasmonic Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The effects of highly anisotropic dielectric on surface plasmon polaritons (SPPs) are investigated in several three-layer plasmonic nanostructures. Dispersion relations of SPPs in anisotropic-dielectric-metal (ADM), dielectric-anisotropic-metal (DAM), and metal-anisotropic-metal (MAM) structures are analytically derived. The numerical results in the visible indicate that, in ADM, the propagation length of a conductor-gap-dielectric mode is changed from 5.9 to 91 μm and its cutoff thickness from 83 to 7 nm with varying the optical axis, while in DAM, the influences of anisotropic dielectric are reversed on propagation length and cutoff thickness. In MAM, by tuning the optical axis, the light confinement of symmetry SPPs mode varies about 10 %. Further numerical calculations show that the above results induced by the anisotropy of dielectric can be extended to the telecommunication frequency. The improved mode properties may be used in plasmonic-based nanodevices and tunable single surface plasmon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48(14):957–960

    Article  CAS  Google Scholar 

  3. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

  4. Wokaun A, Bergman JG, Heritage JP, Glass AM, Liao PF, Olson DH (1981) Surface second-harmonic generation from metal island films and microlithographic structures. Phys Rev B 24(2):849

    Article  CAS  Google Scholar 

  5. Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98(2):026104

    Article  Google Scholar 

  6. Andrew P, Barnes WL (2004) Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306(5698):1002–1005

    Article  CAS  Google Scholar 

  7. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501

    Article  CAS  Google Scholar 

  8. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632

    Article  CAS  Google Scholar 

  9. Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10(4):1501–1505

    Article  CAS  Google Scholar 

  10. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett 89:093103

    Article  Google Scholar 

  11. Wang S, Xu Y, Lan S, Wu LJ (2011) Flat-top reflection characteristics in metal-dielectric-metal plasmonic waveguide structure side coupled with cascaded double cavities. Plasmonics 6(4):689–695

    Article  CAS  Google Scholar 

  12. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  CAS  Google Scholar 

  13. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polaritons-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186

    Article  CAS  Google Scholar 

  14. Feigenbaum E, Orenstein M (2007) Modeling of complementary (void) plasmon waveguiding. J Lightwave Tech 25(9):2547–2562

    Article  Google Scholar 

  15. Pigeon F, Salakhutdinov IF, Tishchenko AV (2001) Identity of long-range surface plasmons along asymmetric structures and their potential for refractometirc sensors. J Appl Phys 90:852–859

    Article  CAS  Google Scholar 

  16. Adato R, Guo JP (2007) Characteristics of ultra-long range surface plasmon waves at optical frequencies. Opt Express 15(8):5009–5017

    Article  Google Scholar 

  17. Wang L, Gu Y, Hu X, Gong Q (2011) Long-range surface plasmon polariton modes with a large field localized in a nanoscale gap. Appl Phys B 104(4):919–924

    Article  CAS  Google Scholar 

  18. Bozhevolnyie SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802

    Article  Google Scholar 

  19. Kusunoki F, Yotsuya T, Takahara J, Kobayashi T (2005) Propagation properties of guided waves in index-guided two dimensional optical waveguides. Appl Phys Lett 86:211101

    Article  Google Scholar 

  20. Kang M, Park J, Lee IM, Lee B (2009) Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides. Opt Express 17(2):676–687

    Article  CAS  Google Scholar 

  21. Li R, Cheng C, Ren FF, Chen J, Fan YX, Ding JP, Wang HT (2008) Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Appl Phys Lett 92:141115

    Article  Google Scholar 

  22. Liscidini M, Sipe JE (2010) Quasiguided surface plasmon excitations in anisotropic materials. Phys Rev B 81(11):115335

    Article  Google Scholar 

  23. Wang XL, Wang P, Chen JX, Lu YH, Ming H, Zhan QW (2011) Theoretical and experimental studies of surface plasmons excited at metal-uniaxial dielectric interface. Appl Phys Lett 98:021113

    Article  Google Scholar 

  24. Hiep HM, Fujii M, Hayashi S (2007) Effects of molecular orientation on surface-plasmon-coupled emission patterns. Appl Phys Lett 91:183110

    Article  Google Scholar 

  25. Ghazali FAM, Fujii M, Hayashi S (2009) Anisotropic propagation of surface plasmon polaritons caused by oriented molecular overlayer. Appl Phys Lett 95:033303

    Article  Google Scholar 

  26. Luo R, Gu Y, Li XK, Wang LJ, Khoo IC, Gong QH (2013) Mode recombination and alternation of surface plasmons in anisotropic mediums. Appl Phys Lett 102:011117

    Article  Google Scholar 

  27. Krokhin AA, Neogi A, McNeil D (2007) Long-range propagation of surface plasmons in a thin metallic film deposited on an anisotropic photonic crystal. Phys Rev B 75(23):235420

    Article  Google Scholar 

  28. Nagaraj Krokhin AA (2010) Long-range surface plasmons in dielectric-metal-dielectric structure with highly anisotropic substrates. Phys Rev B 81(8):085426

    Article  Google Scholar 

  29. Avrutsky I, Soref R, Buchwald W (2010) Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Opt Express 18(1):348–363

    Article  CAS  Google Scholar 

  30. Halevi P, Krokhin AA, Arriaga J (1999) Photonic crystal optics and homogenization of 2D periodic composites. Phys Rev Lett 82(4):719–722

    Article  CAS  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  32. Park J, Lee SY, Lee B (2010) Polarization singularities in the metal-insulator-metal-surface plasmon polariton waveguide. IEEE J Quantum Electron 46(11):1577–1581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grants 91121018 and 11121091, National Key Basic Research Program under grant 2013CB328700, and National Fund for Fostering Talents of Basic Science J1030310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gu, Y., Luo, R. et al. Effects of Dielectric Anisotropy on Surface Plasmon Polaritons in Three-Layer Plasmonic Nanostructures. Plasmonics 8, 1043–1049 (2013). https://doi.org/10.1007/s11468-013-9507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9507-0

Keywords

Navigation