Skip to main content
Log in

Simultaneous Photoluminescence and SERS Observation of Nanodiamond at Laser Deposition on Noble Metals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The metal-modified luminescence and surface-enhanced Raman scattering (SERS) occurring near nanostructured surfaces of noble metals recently have been observed for different kinds of nanocrystals associated with the metal nanostructures. In the present work, the photoluminescence and Raman scattering of diamond nanocrystals of sizes 100 and 300 nm patterned on Ag and Au thin nanostructured films via laser accelerated deposition using a femtosecond laser are discussed. The laser accelerated deposition forms ordered periodical nanodiamond–metal nanostructures and allows adjusting the interaction between nanodiamond and metal by varying the laser acceleration parameters as well as by using different metals (Ag and Au), and varying the structure of the metal film. Correspondingly, the spectroscopic properties of the system determined by interaction between nanoparticles and metal are tuned. The enhancement of nanodiamond photoluminescence together with SERS of graphite fraction and disordered carbon of nanodiamonds are observed for nanodiamond–Ag structures at 488- and 532-nm excitations, while for the nanodiamond–Au structure some characteristic SERS effects are observed at 785-nm excitation. The mechanisms of enhancement are discussed considering the nanodiamond–metal interaction and laser acceleration effect on nanodiamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluorescence 12(2):121–129

    Article  Google Scholar 

  2. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  3. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  4. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    Article  Google Scholar 

  5. Zheng J, Ding Y, Tian B, Wang ZL, Zhuang X (2008) Luminescent and Raman active silver nanoparticles with polycrystalline structure. J Am Chem Soc 130:10472–10473

    Article  CAS  Google Scholar 

  6. Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Express 15(5):2598–2606

    Article  CAS  Google Scholar 

  7. Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett 89(11):117401, 1–4

    Article  CAS  Google Scholar 

  8. Ma X, Tan H, Kipp T, Mews A (2010) Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett 10:4166–4174

    Article  CAS  Google Scholar 

  9. Lim TS, Fu CC, Lee KC, Lee HY, Chen K, Cheng WF, Pai WW, Chang HC, Fann W (2009) Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. Phys Chem Chem Phys 11:1508–1514S

    Article  CAS  Google Scholar 

  10. Schietinger S, Barth M, Aichele T, Benson O (2009) Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett 9(4):1694–1698

    Article  CAS  Google Scholar 

  11. Chi Y, Chen G, Jelezko F, Wu E, Zeng H (2011) Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol Lett 23(6):374–376

    Article  CAS  Google Scholar 

  12. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  13. Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA (2006) Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett 88:161102

    Article  Google Scholar 

  14. Kühn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402

    Article  Google Scholar 

  15. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  16. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  17. Xu H, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  18. Honma I, Sano T, Komiyama H (1993) Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles. J Phys Chem 97:6692–6695

    Article  CAS  Google Scholar 

  19. Hong Z-C, Perevedentseva E, Treschev S, Wang J-B, Cheng C-L (2009) Surface enhanced Raman scattering of nanodiamond using visible-light-activated TiO2 as a catalyst to photo-reduce nano-structured silver from AgNO3 as SERS-active substrate. J Raman Spectrosc 40(8):1016–1022

    Article  CAS  Google Scholar 

  20. Karmenyan A, Perevedentseva E, Chiou A, Cheng C-L (2007) Positioning of carbon nanostructures on metal surfaces using laser acceleration and the Raman analyses of the patterns. Eur J Phys 61:513–517

    CAS  Google Scholar 

  21. Veres M, Perevedentseva E, Karmenyan AV, Tóth S, Koós S (2010) Catalytic activity of gold on nanocrystalline diamond support. Phys Status Solidi C 7(3–4):1211–1214

    CAS  Google Scholar 

  22. Perevedentseva E, Karmenyan A, Chung PH, He YT, Cheng C-L (2006) Surface enhanced Raman spectroscopy of carbon nanostructures. Surf Sci 600:3723–3728

    Article  CAS  Google Scholar 

  23. Chase SJ, Bacsa WS, Mitch MG, Pilione LJ, Lannin JS (1992) Surface-enhanced Raman scattering and photoemission of C60 on noble-metal surfaces. Phys Rev B 46:7873–7877

    Article  CAS  Google Scholar 

  24. Veres M, Fule M, Toth S, Koos M, Pocsik I (2004) Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diamond Relat Mater 13:1412–1415

    Article  CAS  Google Scholar 

  25. Roy M, George VC, Dua AK, Raj P, Schulze S, Tenne DA, Salvan G, Zahn DRT (2002) Detection of nano phase at the surface of HFCVD grown diamond films using surface enhanced Raman spectroscopic (SERS) technique. Diamond Relat Mater 11:1858–1862

    Article  CAS  Google Scholar 

  26. Le Ru EC, Etchegoin PG (2004) Sub-wavelength localization of hot-spots in SERS. Chem Phys Lett 396:393–397

    Article  Google Scholar 

  27. Gildenblat GS, Grot SA, Badzian A (1991) The electrical properties and device applications of homoepitaxial and polycrystalline diamond films. Proc IEEE 79:647–668

    Article  CAS  Google Scholar 

  28. Lifshitz Y (1999) Diamond like carbon—present status. Diamond Relat Mater 8:1659

    Article  CAS  Google Scholar 

  29. Raty J-Y, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Quantum confinement and fullerene-like surface reconstructions in nanodiamonds. Phys Rev Lett 90(3):037401

    Article  Google Scholar 

  30. Davies G, Lawson S, Collins A, Mainwood A, Sharp S (1992) Vacancy-related centers in diamond. Phys Rev B 46(2):13157

    Article  CAS  Google Scholar 

  31. Iakoubovskii K, Adriaenssens GJ (2000) Luminescence excitation spectra in diamond. Phys Rev B 61(15):10174

    Article  CAS  Google Scholar 

  32. Schrand AM, Hens SAC et al (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74

    Article  CAS  Google Scholar 

  33. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A 104(3):727–732

    Article  CAS  Google Scholar 

  34. Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diamond Relat Mater 18:567–573

    Article  CAS  Google Scholar 

  35. Sun Y-P, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, Gu L, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112(47):18295–18298

    CAS  Google Scholar 

  36. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541

    Article  CAS  Google Scholar 

  37. Kühn S, Hettich C, Schmitt C, Poizat J-Ph, Sandoghdar V (2001) Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J Microsc 202:2–6

    Article  Google Scholar 

  38. Muhlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  39. Askar'yan GA (1962) Effects of the gradient of a strong electromagnetic beam on electrons and atoms. Sov Phys JETP 15:1088 [Zh Eksp Teor Fiz 42:1567]

    Google Scholar 

  40. Ashkin A, Dziedzic JM (1971) Optical levitation by radiation pressure. Appl Phys Lett 19(8):283–285

    Article  Google Scholar 

  41. Buican TN, Smyth MJ, Crissman HA, Salzman GC, Stewart CC, Martin JC (1987) Automated single-cell manipulation and sorting by light trapping. Appl Opt 26(24):5311–5316

    Article  CAS  Google Scholar 

  42. Kawata S, Sugiura T (1992) Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt Lett 17(11):772–774

    Article  CAS  Google Scholar 

  43. Tam AC, Leung WP, Zapka W, Ziemlich W (1992) Laser-cleaning techniques for removal of surface particulates. J Appl Phys 71(7):3515–3523

    Article  Google Scholar 

  44. Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Spectroscopic study of bio-functionalized nanodiamonds. Diamond Relat Mater 15:622–625

    Article  CAS  Google Scholar 

  45. Osswald S, Behler K, Gogotsi Y (2008) Laser-induced light emission from carbon nanoparticles. J Appl Phys 104:074308, 7

    Article  Google Scholar 

  46. Pratesi G (2009) Impact diamonds: formation, mineralogical features and cathodoluminescence properties. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin, pp 61–86

    Chapter  Google Scholar 

  47. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277

    Article  CAS  Google Scholar 

  48. Gogotsi Y, Kailer A, Nickel KG (1998) Pressure-induced phase transformations in diamond. J Appl Phys 84:1299

    Article  CAS  Google Scholar 

  49. Gogotsi Y, Kailer A, Nickel KG (1999) Transformation of diamond to graphite. Nature 40:663

    Article  Google Scholar 

  50. Chacham H, Kleinman L (2000) Instabilities in diamond under high shear stress. Phys Rev Lett 85:4904

    Article  CAS  Google Scholar 

  51. Qian J, Pantea C, Voronin G, Zerda TW (2001) Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys 90:1632

    Article  CAS  Google Scholar 

  52. Erasmus RM, Daniel RD, Comins JD (2011) Three-dimensional mapping of stresses in plastically deformed diamond using micro-Raman and photoluminescence spectroscopy. J Appl Phys 109:013527

    Article  Google Scholar 

  53. Perevedentseva E, Melnik N, Tsai C-Y, Lin Y-C, Kazaryan M, Cheng C-L (2011) Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J Appl Phys 109:034704

    Article  Google Scholar 

  54. Karavanskii A, Melnik NN, Zavaritskaya TN (2001) Preparation and study of the optical properties of porous graphite. JETP Lett 74:186–189

    Article  CAS  Google Scholar 

  55. Melnik NN, Zavaritskaya TN, Karavanski VA (2004) Surface and bulk states of disordered carbon and their optical properties. Proc SPIE 5507:103–109

    Article  CAS  Google Scholar 

  56. Soller T, Ringler M, Wunderlich M, Klar TA, Feldmann J, Josel H-P, Markert Y, Nichtl A, Kürzinger K (2007) Radiative and nonradiative rates of phosphors attached to gold nanoparticles. Nano Lett 7:1941–1946

    Article  CAS  Google Scholar 

  57. Dumeige Y, Treussart F, Alléaume R, Gacoin T, Roch J-F, Grangier P (2004) Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. J Lumin 109:61–67

    Article  CAS  Google Scholar 

  58. Martin J, Grebner W, Sigle W, Wannemacher R (1999) Confocal microscopy of color center distributions in diamond. J Lumin 83–84:493–497

    Article  Google Scholar 

  59. Chan JW, Huser TR, Risbud SH, Hayden JS, Krol DM (2003) Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl Phys Lett 82:2371

    Article  CAS  Google Scholar 

  60. Akamatsu K, Takei S, Mizuhatab M, Kajinamib A, Dekib S, Takeokac S, Fujiid M, Hayashid S, Yamamoto K (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359:55–60

    Article  CAS  Google Scholar 

  61. Jiménez JA, Lysenko S, Liu H (2008) Photoluminescence via plasmon resonance energy transfer in silver nanocomposite glasses. J Appl Phys 104:054313

    Article  Google Scholar 

  62. Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl Phys A 80:1535–1540

    Article  CAS  Google Scholar 

  63. Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y (2001) Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 17:578–580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council (NSC) of Taiwan for financially supporting this project in a National Nano Science and Technology Program under grant NSC-99-2120-M259-001 and the Ministry of Education of Taiwan (Top University Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Karmenyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmenyan, A.V., Perevedentseva, E., Veres, M. et al. Simultaneous Photoluminescence and SERS Observation of Nanodiamond at Laser Deposition on Noble Metals. Plasmonics 8, 325–333 (2013). https://doi.org/10.1007/s11468-012-9393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9393-x

Keywords

Navigation