Skip to main content
Log in

Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Behaviour of granular soils subjected to internal erosion involves complex coupling between solid–fluid interaction, skeleton deformation and microstructural evolutions. This paper presents a micro–macro investigation on suffusion in idealized gap-graded and well-graded soils using the coupled computational fluid dynamics and discrete element method. The interaction between soil particles and seepage flow is modelled via momentum exchange between two phases. The progressive loss of fine particles subjected to upward seepage flow at various hydraulic gradients is investigated. The fines content, volumetric contraction and void ratio are monitored to identify the changes of macroscopic states of the soil skeleton. In addition, the microstructural evolution is tracked via particle-scale descriptors such as coordination numbers and force chain statistics. Several clogging–unclogging events which are responsible for the sudden changes of fines content and skeleton response are observed during suffusion. A parametric study indicates that the initial fines content and the hydraulic gradient significantly affect the kinetics of suffusion. Microstructural analyses reveal that the removal of fines is accompanied by the reduction in weak contact pairs and particles with low connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aboul Hosn R, Sibille L, Benahmed N, Chareyre B (2017) Discrete numerical modelling of loose soil with spherical particles and interparticle rolling friction. Granul Matter 19:1–12

    Article  Google Scholar 

  2. Aboul Hosn R, Sibille L, Benahmed N, Chareyre B (2018) A discrete numerical model involving partial fluid–solid coupling to describe suffusion effects in soils. Comput Geotech 95:30–39

    Article  Google Scholar 

  3. Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206:269–282

    Article  Google Scholar 

  4. Bendahmane F, Marot D, Alexis A (2008) Experimental parametric study of suffusion and backward erosion. J Geotech Geoenviron Eng 134(1):57–67

    Article  Google Scholar 

  5. Chang DS (2012) Internal erosion and overtopping erosion of earth dams and landslide dams. Dissertation, Hong Kong University of Science and Technology

  6. Chang CS, Meidani M (2013) Dominant grains network and behaviour of sand–silt mixtures: stress–strain modelling. Int J Numer Anal Methods Geomech 37:2563–2589

    Article  Google Scholar 

  7. Chang DS, Zhang LM (2013) Extended internal stability criteria for soils under seepage. Soils Found 53(4):569–583

    Article  Google Scholar 

  8. Chang DS, Zhang LM (2013) Critical hydraulic gradients of internal erosion under complex stress states. J Geotech Geoenviron Eng 139:1454–1467

    Article  Google Scholar 

  9. Chen C, Zhang LM, Chang DS (2016) Stress–strain behaviour of granular soils subjected to internal erosion. J Geotech Geoenviron Eng 142(12):6016014

    Article  Google Scholar 

  10. Cividini A, Gioda G (2004) Finite-element approach to the erosion and transport of fine particles in granular soils. Int J Geomech 4:191–198

    Article  Google Scholar 

  11. Di Felice R (1994) The voidage function for fluid–particle interaction systems. Int J Multiphase Flow 20:153–159

    Article  MATH  Google Scholar 

  12. Ding WT, Xu W (2018) Study on the multiphase fluid–solid interaction in granular materials based on an LBM–DEM coupled method. Powder Technol 314:129–139

    Google Scholar 

  13. El Shamy U, Aydin F (2008) Multiscale modelling of flood-induced piping in river levees. J Geotech Geoenviron Eng 134:1385–1398

    Article  Google Scholar 

  14. Fannin RJ, Moffat R (2006) Observations on internal stability of cohesionless soils. Géotechnique 56:497–500

    Article  Google Scholar 

  15. Fell R, Fry JJ (2013) State of the art on the likelihood of internal erosion of dams and levees by means of testing. In: Bonelli S (ed) Erosion in geomechanics applied to dams and levees. ISTE-Wiley, London, pp 1–99

    Google Scholar 

  16. Foster M, Fell R, Spannagle M (2000) The statistics of embankment dam failures and accidents. Can Geotech J 37:1000–1024

    Article  Google Scholar 

  17. Fry JJ (2012) Introduction to the process of internal erosion in hydraulic structures: embankment dams and dikes. In: Bonelli S (ed) Erosion of geomaterials. ISTE-Wiley, London, pp 1–36

    Google Scholar 

  18. Goniva C, Kloss C, Deen NG et al (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10:582–591

    Article  Google Scholar 

  19. Hicher PY (2013) Modelling the impact of particle removal on granular material behaviour. Géotechnique 63:118–128

    Article  Google Scholar 

  20. Horikoshi K, Takahashi A (2015) Suffusion-induced change in spatial distribution of fine fractions in embankment subjected to seepage flow. Soils Found 55:1293–1304

    Article  Google Scholar 

  21. Huang H, Zhang F, Callahan P, Ayoub J (2012) Granular fingering in fluid injection into dense granular media in a Hele–Shaw cell. Phys Rev Lett 108:1–4

    Google Scholar 

  22. Jiang MD, Yang ZX, Barreto D, Xie YH (2018) The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies. Granul Matter 20:1–15

    Article  Google Scholar 

  23. Kawano K, Shire T, O’Sullivan C (2018) Coupled particle–fluid simulations of the initiation of suffusion. Soils Found 58:972–985

    Article  Google Scholar 

  24. Ke L, Takahashi A (2014) Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils Found 54:713–730

    Article  Google Scholar 

  25. Kenney TC, Lau D (1985) Internal stability of granular filters. Can Geotech J 22:215–225

    Article  Google Scholar 

  26. Kézdi Á (1979) Soil physics: selected topics. Elsevier, Amsterdam

    Google Scholar 

  27. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn Int J 12:140–152

    Article  MathSciNet  Google Scholar 

  28. Langroudi MF, Soroush A, Shourijeh PT, Shafipour R (2013) Stress transmission in internally unstable gap-graded soils using discrete element modelling. Powder Technol 247:161–171

    Article  Google Scholar 

  29. Langroudi MF, Soroush A, Shourijeh PT (2015) A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technol 276:66–79

    Article  Google Scholar 

  30. Li M, Fannin RJ (2012) A theoretical envelope for internal instability of cohesionless soil. Géotechnique 62:77–80

    Article  Google Scholar 

  31. Li X, Zhao J (2018) Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol 338:493–505

    Article  Google Scholar 

  32. Moffat R, Fannin RJ (2011) A hydromechanical relation governing internal stability of cohesionless soil. Can Geotech J 48:413–424

    Article  Google Scholar 

  33. Muir Wood D, Maeda K (2008) Changing grading of soil: effect on critical states. Acta Geotech 3:3–14

    Article  Google Scholar 

  34. Muir Wood D, Maeda K, Nukudani E (2010) Modelling mechanical consequences of erosion. Géotechnique 60:447–457

    Article  Google Scholar 

  35. O’Sullivan C, Bray JD, Riemer MF (2002) Influence of particle shape and surface friction variability on response of rod-shaped particulate media. J Eng Mech 128:1182–1192

    Article  Google Scholar 

  36. Ouyang M, Takahashi A (2015) Influence of initial fines content on fabric of soils subjected to internal erosion. Can Geotech J 15:1–15

    Google Scholar 

  37. Reddi LN, Ming X, Hajra MG, Lee IM (2000) Permeability reduction of soil filters due to physical clogging. J Geotech Geoenviron Eng 126:236–246

    Article  Google Scholar 

  38. Richards KS, Reddy KR (2012) Experimental investigation of initiation of backward erosion piping in soils. Géotechnique 62:933–942

    Article  Google Scholar 

  39. Sato M, Kuwano R (2015) Suffusion and clogging by one-dimensional seepage tests on cohesive soil. Soils Found 55:1427–1440

    Article  Google Scholar 

  40. Scholtès L, Hicher PY, Sibille L (2010) Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique 338:627–638

    Article  MATH  Google Scholar 

  41. Shafipour R, Soroush A (2008) Fluid coupled-DEM modelling of undrained behaviour of granular media. Comput Geotech 35:673–685

    Article  Google Scholar 

  42. Shan T, Zhao J (2014) A coupled CFD–DEM analysis of granular flow impacting on a water reservoir. Acta Mech 225:2449–2470

    Article  MathSciNet  MATH  Google Scholar 

  43. Sharma N, Patankar NA (2005) A fast computation technique for the direct numerical simulation of rigid particulate flows. J Comput Phys 205:439–457

    Article  MATH  Google Scholar 

  44. Shire T, O’Sullivan C (2013) Micromechanical assessment of an internal stability criterion. Acta Geotech 8:81–90

    Article  Google Scholar 

  45. Sibille L, Marot D, Sail Y (2015) A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotech 10:735–748

    Article  Google Scholar 

  46. Skempton AW, Brogan JM (1994) Experiments on piping in sandy gravels. Géotechnique 44(3):449–460

    Article  Google Scholar 

  47. Sterpi D (2003) Effects of the erosion and transport of fine particles due to seepage flow. Int J Geomech 3:111–122

    Article  Google Scholar 

  48. Tao H, Tao J (2017) Quantitative analysis of piping erosion micro-mechanisms with coupled CFD and DEM method. Acta Geotech 12:573–592

    Article  Google Scholar 

  49. Tao J, Tao H (2017) Factors affecting piping erosion resistance: revisited with a numerical modelling approach. Int J Geomech ASCE 17:1–14

    Article  Google Scholar 

  50. Tejada IG, Sibille L, Chareyre B (2016) Role of blockages in particle transport through homogeneous granular assemblies. Europhys Lett 115:54005

    Article  Google Scholar 

  51. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  52. Thornton C, Antony SJ (2000) Quasi-static shear deformation of a soft particle system. Powder Technol 109:179–191

    Article  Google Scholar 

  53. Trussell RR, Chang M (1999) Review of flow through porous media as applied to head loss in water filters. J Environ Eng 125:998–1006

    Article  Google Scholar 

  54. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87

    Article  Google Scholar 

  55. Uzuoka R, Ichiyama T, Mori T, Kazama M (2012) Hydro-mechanical analysis of internal erosion with mass exchange between solid and water. In: Proceedings of 6th international conference on scour and erosion, Paris, pp 655–662

  56. Van Beek VM, Van Essen HM, Vandenboer K, Bezuijen A (2015) Developments in modelling of backward erosion piping. Géotechnique 65:740–754

    Article  Google Scholar 

  57. Vardoulakis I, Stavropoulou M, Papanastasiou P (1996) Hydro-mechanical aspects of the sand production problem. Transp Porous Media 22:225–244

    Article  Google Scholar 

  58. Voivret C, Radjai F, Delenne J-Y, El Youssoufi MS (2009) Multiscale force networks in highly polydisperse granular media. Phys Rev Lett 102:178001

    Article  MATH  Google Scholar 

  59. Volk A, Ghia U, Stoltz C (2017) Effect of grid type and refinement method on CFD–DEM solution trend with grid size. Powder Technol 311:137–146

    Article  Google Scholar 

  60. Wan CF, Fell R (2008) Assessing the potential of internal instability and suffusion in embankment dams and their foundations. J Geotech Geoenviron Eng 134:401–407

    Article  Google Scholar 

  61. Wang M, Feng YT, Pande GN et al (2017) Numerical modelling of fluid-induced soil erosion in granular filters using a coupled bonded particle lattice Boltzmann method. Comput Geotech 82:134–143

    Article  Google Scholar 

  62. Xu Y, Zhang LM (2009) Breaching parameters for earth and rockfill dams. J Geotech Geoenviron Eng 135:1957–1970

    Article  Google Scholar 

  63. Xu SL, Sun R, Cai YQ, Sun HL (2018) Study of sedimentation of non-cohesive particles via CFD–DEM simulations. Granul Matter 20:1–17

    Article  Google Scholar 

  64. Yang P, Xiang J, Fang F et al (2016) Modelling of fluid–structure interaction with multiphase viscous flows using an immersed-body method. J Comput Phys 321:571–592

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang F, Li M, Peng M et al (2018) Three-dimensional DEM modelling of the stress–strain behaviour for the gap-graded soils subjected to internal erosion. Acta Geotech 1:1–17

    Google Scholar 

  66. Zhao J, Shan T (2013) Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technol 239:248–258

    Article  Google Scholar 

  67. Zhao T, Houlsby GT, Utili S (2014) Investigation of granular batch sedimentation via DEM–CFD coupling. Granul Matter 16:921–932

    Article  Google Scholar 

  68. Zhao T, Dai F, Xu N (2017) Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides 14:189–201

    Article  Google Scholar 

  69. Zhong W, Yu A, Liu X et al (2016) DEM/CFD–DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol 302:108–152

    Article  Google Scholar 

  70. Zhou YC, Wright BD, Yang RY et al (1999) Rolling friction in the dynamic simulation of sandpile formation. Phys A Stat Mech Appl 269:536–553

    Article  Google Scholar 

  71. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J Fluid Mech 661:482–510

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63:5728–5770

    Article  Google Scholar 

Download references

Acknowledgements

Z. Yang wishes to thank the support of the National Key R&D Program of China (No. 2016YFC0800200) and Natural Science Foundation of China (Nos. 51825803 and 51578499). Y. Zhang wishes to thank the support of the University of Colorado Boulder through the startup funding. Z. Hu wishes to thank the support of China Scholarship Council (No. 201706320093) and the Academic New-star Program of Zhejiang University (No. 2018031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yida Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zhang, Y. & Yang, Z. Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study. Acta Geotech. 14, 795–814 (2019). https://doi.org/10.1007/s11440-019-00789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00789-8

Keywords

Navigation