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Abstract A brain network consisting of two key parietal

nodes, the precuneus and the posterior cingulate cortex, has

emerged from recent fMRI studies. Though it is anatomi-

cally adjacent to and spatially overlaps with the default

mode network (DMN), its function has been associated

with memory processing, and it has been referred to as the

parietal memory network (PMN). Independent component

analysis (ICA) is the most common data-driven method

used to extract PMN and DMN simultaneously. However,

the effects of data preprocessing and parameter determi-

nation in ICA on PMN–DMN segregation are completely

unknown. Here, we employ three typical algorithms of

group ICA to assess how spatial smoothing and model

order influence the degree of PMN–DMN segregation. Our

findings indicate that PMN and DMN can only be stably

separated using a combination of low-level spatial

smoothing and high model order across the three ICA

algorithms. We thus argue for more considerations on

parametric settings for interpreting DMN data.

Keywords Default mode network � Parietal memory

network � Independent component analysis � Model

order � Resting-state fMRI � Spatial smoothing

1 Introduction

Resting state networks (RSN) refer to a set of brain regions

acting in a similar fashion without a specific task or stim-

ulus, of which, the default mode network (DMN) is the

most heavily investigated RSN [1, 2]. Recently, an RSN

anchored at two parietal areas including the precuneus and

the posterior cingulate has been identified in various

studies of DMN. Despite their spatial proximity, the sep-

aration of the posterior parietal network from DMN is

important from a neuroscience perspective. Specifically,

this network has a different developmental trajectory from

DMN [3] and is named the parietal memory network

(PMN) due to its functional role in novel memory-related

processing [4]. A comprehensive review of the functional

anatomy of DMN white matter connections and neu-

ropsychological findings ruled-out the precuneus as a

structure within the DMN [1]. The segregation between

PMN and DMN has also been revealed in various studies

examining low-frequency fluctuations in spontaneous brain

activity as measured by resting-state functional MRI

(rfMRI) [5–7]. In practice, however, PMN can be easily

mislabeled as a posterior part of DMN. Due to the spatial

proximity and various methodological issues, the inter-

pretation of DMN-related neuroimaging findings is

difficult.
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Several methods including clustering, graph theory and

independent component analysis (ICA) have been used to

extract PMN and DMN [5, 7, 8]. ICA can obtain multiple

spatially overlapped RSNs without a priori knowledge and is

therefore perfectly suitable for examining PMN/DMN

activities, as the boundaries between these two networks are

not well-defined. Previous studies have demonstrated that

model order (MO) can significantly impact the estimated

RSNs while a high MO was recommended for ICA [9, 10].

Of note, these studies did not directly evaluate the effects of

MO on PMN–DMN segregation. In addition, spatial

smoothing (SM) is a common step in rfMRI preprocessing

prior to group ICA analysis [11, 12]. SM increases the signal-

to-noise ratio and accounts for inter-individual registration

bias. However, SM with a larger Gaussian kernel could

decrease the spatial resolution and potentially blur the signals

from functionally distinct areas [13, 14]. Because the PMN

surrounds the posterior part of the DMN, the influence of SM

kernel size should not be overlooked. Unfortunately, to the

best of our knowledge, the effects of MO and SM on PMN–

DMN segregation have not been systematically investigated.

Currently, there are three different types of ICA algo-

rithms used in group-level rfMRI data analysis: (1) apply

ICA to each individual dataset without any constraints on

the dependence among individuals and combine individual

results with different similarity metrics post hoc [3, 15, 16];

(2) apply ICA to each individual dataset and simultane-

ously take the inter-individual dependence into considera-

tion [17, 18]; (3) transform all individual-level datasets into

one group-level dataset, and then apply ICA to the aggre-

gated dataset with an additional procedure of back-recon-

struction of individual components [19–22]. The answer to

the question of whether PMN–DMN segregation using ICA

is algorithm-dependent is not trivial.

To determine the optimal parametric settings for group

ICA for robust PMN–DMN separation, in this study, we aim

to systematically investigate the effects of MO and SM on the

segregation of these two networks using three types of group

level ICA methods. Using various MO-SM combinations in

these three algorithms, we identified components represent-

ing PMN and DMN using spatial templates and a series of

objective criteria. We evaluated the quality of the PMN and

DMN identified by ICA using goodness-of-fit, mean weights,

and inter-individual reproducibility. We hypothesized that

both MO and SM would affect PMN–DMN discrimination.

2 Materials and methods

2.1 Subjects

Sixty-five healthy subjects (age 25.13 ± 6.42 years, 30#,

35$) were recruited from Shanghai Mental Health Center.

The Institutional Review Board at the Shanghai Mental

Health Center approved the study protocol. Written

informed consent was obtained from each participant or the

participant’s guardian prior to data acquisition. The inclu-

sion criteria for the healthy subjects were as follows: (1)

age ranging from 15 to 40; (2) no serious physical diseases,

pregnancy, or substance abuse; (3) no psychoactive sub-

stance use for at least 1 month; (4) no history of mental

disorder; (5) education levels exceeding primary school

level. The exclusion criteria for healthy subjects were as

follows: (1) meet the criteria for any mental disorder

according to DSM-IV; (2) family history of mental disor-

der; (3) unstable mental state; (4) history of taking

antipsychotic drugs; (5) substance abuse in the past month;

(6) pregnancy; (7) history of serious physical disease; (8)

unsuitability for MRI scans.

2.2 Data acquisition

All imaging data were collected using a 3.0 Tesla Siemens

Verio MRI scanner (Enlargen, Germany) at the Shanghai

Mental Health Center. Resting-state scans were acquired

with an echo-planar imaging (EPI) sequence (45 axial

interleaved slices, acquired from inferior to superior,

FOV = 216 mm, matrix = 72 9 72, slice thick-

ness/gap = 3.0/0.0 mm, no gap, TR/TE = 3000/30 ms,

flip angle = 85�, 170 volumes, duration 803000). High-res-

olution anatomical scans were acquired with a T1-weighted

3D MP-RAGE sequence (192 sagittal slices,

FOV = 256 mm, matrix = 256 9 240, slice thick-

ness/gap = 1.0/0.0 mm, TR/TE/TI = 2300/2.96/900 ms).

Participants were instructed to close their eyes and remain

awake during scanning.

2.3 Preprocessing and quality control

Both anatomical and rfMRI images were preprocessed

using the Connectome Computation System [23]. Struc-

tural images were first cleaned by using a spatially adaptive

non-local mean filter to remove noise [24] and fed into

FreeSurfer [25] for extracting the brain as well as for

segmenting the brain tissues into gray matter, white matter

and cerebrospinal fluid. All images were converted into

MNI152 space using Advanced Normalization Tools

(ANTs) [26].

The following preprocessing steps were applied to the

rfMRI images: (1) the first 15 volumes were discarded to

allow MRI signal equilibration; (2) slice timing differences

were corrected; (3) the head movements were realigned

over the entire scan; (4) the mean rfMRI image was spa-

tially normalized to MNI152 space via the combined reg-

istration of a rigid transformation of the individual

structural images and nonlinear ANTs transformation; (5)
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the 4D data were standardized to a global mean intensity of

10,000; (6) the data were temporally band-pass

(0.01–0.1 Hz) filtered; (7) the data were then spatially

smoothed using 0, 6, 9 and 12 mm FWHM Gaussian

kernels.

The quality of the brain extraction and registration was

visually inspected. The anatomical images of four partici-

pants were excluded from further analysis due to poor brain

extraction or registration quality. Head motion in the rfMRI

data of the 61 participants was evaluated using mean

frame-wise displacement (meanFD) [27], and the meanFD

was less than 0.2 mm.

2.4 Group ICA analysis

We chose Generalized Ranking and Averaging ICA by

Reproducibility (gRAICAR) [3, 28], Independent Vector

Analysis (IVA-GL) [17, 18] and Time-Concatenated Group

ICA (TCgICA) [21], corresponding to the three types of

group ICA mentioned above, to perform brain network

extraction from the preprocessed rfMRI datasets. The

principle behind each algorithm will be generally intro-

duced, followed by a detailed description of the parameter

settings and the analysis steps.

gRAICAR (https://github.com/yangzhi-psy/gRAICAR)

is a matching algorithm performed on a group of inde-

pendent components (ICs) derived from the individual-

level ICA based on similarity. Each preprocessed rfMRI

dataset was decomposed into a number of ICs in individual

native space using MELODIC [29]. The ICs were then

transformed into MNI152 standard space. The individual-

level and normalized ICs were further fed into the gRAI-

CAR algorithm for alignment across participants. Finally, a

weighted average of the aligned ICs was computed and

then Z-transformed (zero mean and one standard deviation)

to produce representative group-level ICs.

IVA-GL decomposes all of the individual-level datasets

simultaneously by assuming a multivariate probability

density function to maximize inter-individual linear and

non-linear dependence. IVA-GL was implemented using

the GIFT toolbox (http://mialab.mrn.org/software/gift).

Specifically, the individual preprocessed rfMRI datasets

were temporally de-meaned then processed with IVA-GL

to decompose them into individual-level ICs all at once.

The Z-scores of the individual-level ICs were calculated,

averaged and Z-transformed to obtain the group-level ICs.

Temporal concatenated group ICA (TCgICA) assumes

all participants share a set of common RSNs to be

extracted. The processing steps of TCgICA include: (1) all

individual rfMRI datasets were temporally concatenated

into a large 4D file, which was then reduced using principle

component analysis to obtain a group-level dataset; (2) the

group dataset was then decomposed into a set of group-

level ICs; (3) individual-level ICs were finally

back-reconstructed using dual-regression [20, 30].

TCgICA and dual-regression were implemented and car-

ried out in MELODIC (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

MELODIC).

The above analyses were conducted on preprocessed

rfMRI datasets using four different SM kernel sizes (0, 6, 9,

12 mm). Five different MOs were specified (20, 40, 60, 80,

100), yielding 20 (SM, MO) combinations or sets of group-

level ICs and their corresponding individual-level ICs for

each algorithm. Of note, in assessing the effects of the

parameter settings on PMN–DMN segregation, the MO

settings for the individual-level or group-level analyses

depended on the algorithm used.

2.5 PMN/DMN selection

PMN and DMN were automatically selected using a tem-

plate-matching scheme. Spatial templates for PMN and

DMN were generated based on a 17-network parcellation

of human cerebral cortex [7]. Regarding the observation

that DMN tended to split into anterior and posterior sub-

networks in the high-MO condition [10], we manually

sectioned the DMN template into anterior DMN (aDMN)

and posterior DMN (pDMN). The pDMN has three clusters

located in the precuneus, posterior cingulate and bilateral

angular gyrus. To better characterize the anatomical

specificity of PMN and DMN, we set anchor points in the

center of the mid-line clusters in PMN and pDMN. Fig-

ure 1 illustrates the spatial templates of both PMN and

DMN with the anchor points.

For each (SM, MO) combination, the following IC

selection procedure was carried out (see Fig. 2 for a dia-

gram on the selection procedure): (1) three ICs were

selected from the set of group-level ICs that were most

highly correlated with the PMN, DMN and pDMN tem-

plates; (2) the candidate ICs were then thresholded at Z[ 2

for gRAICAR and IVA-GL, and at Z[ 5 for TCgICA; (3)

the anchor points were assessed to determine if they were

included in the thresholded maps of the ICs representing

PMN/DMN/pDMN. If the candidate ICs of PMN failed to

include the anchor points, PMN was labeled as ‘‘Not

Found’’. If the candidate ICs of DMN and pDMN failed to

include the corresponding anchor points, DMN was labeled

as ‘‘Not Found’’; (4) the ICs representing PMN and DMN/

pDMN were assessed to determine if they are the same IC.

If so, the IC was assigned to the RSN with the higher

correlation coefficient and the other was labeled ‘‘Not

Found’’.

In addition to the selection criteria described above,

Supplementary Figures 1-3 present the ICs simply selected

by the highest correlation with PMN, DMN, aDMN, and

pDMN templates to provide a more complete picture of the
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selected ICs. Assessing the ICs in this way, we can

determine whether PMN and posterior DMN were truly

independent from each other.

2.6 Goodness-of-fit, mean weights, and inter-

individual similarity

Goodness-of-fit (GoF) was defined as the Pearson corre-

lation coefficient between the selected IC and the corre-

sponding template. A higher goodness-of-fit indicates

better correspondence between the template and the

selected IC. We further characterized the selected ICs

representing PMN and DMN by measuring their mean

weights and inter-individual similarity.

Mean weights (MW) were calculated by thresholding

the selected ICs and averaging the weights of the remaining

voxels. A higher mean weight reflects a clearly defined

RSN. Conversely, a low mean weight indicates that the

RSN was not specifically represented by the selected IC.

Inter-individual similarity (IIS) was defined as the mean

and standard deviation of the Pearson correlation coeffi-

cients from the un-thresholded spatial maps of the

individual-level ICs. High mean inter-individual similarity

indicates that the represented RSNs were consistent across

participants.

3 Results

The selected ICs representing PMN and DMN, the GoF

scores, MW and IIS are presented in Tables 1, 2, and 3,

corresponding to the results from gRAICAR, IVA-GL, and

TCgICA. To summarize the results, we grouped our results

into four conditions of SM/MO combinations: (low SM

0/6, low MO 20/40), (low SM 0/6, high MO 80/100), (high

SM 9/12, low MO 20/40) and (high SM 9/12, high MO

80/100). Figure 3 presents the four most extreme cases,

i.e., SM 0/MO 20, SM 0/MO 100, SM 12/MO 20, and

SM12/MO 100 as examples. For a full description of all 20

conditions across the three algorithms, please refer to the

Supplementary Figures 1–3.

3.1 Found or Not-found

As shown in Table 1, we did not identify PMN but suc-

cessfully extracted DMN from the gRAICAR results using

(low SM, low MO), including (0, 20) and (6, 20) combi-

nations. Under all (low SM, high MO) combinations, both

the PMN and DMN were successfully identified. In con-

trast, in the high SM conditions, PMN was not identified

using the (9, 20) and (12, 20) combinations. DMN was not

identified using the (9, 40) combination. The (12, 80)

combination failed to identify DMN.

As shown in Table 2, we were unable to identify PMN

from the IVA-GL results of the low MO conditions, such as

(0, 20), (0, 40), and (6, 20). We did not find DMN in the (6,

40) condition. Under conditions of (low SM, high MO), we

successfully identified both PMN and DMN. Under the

high SM conditions, such as (9, 20), (12, 20), and (12, 40),

IVA-GL failed to extract PMN from the rfMRI data. In the

(high SM, high MO) conditions, the (12, 100) condition

failed to identify PMN and the (9, 80) and (12, 80) con-

ditions failed to identify DMN.

TCgICA failed to estimate the PMN component in the

(6, 40) condition. TCgICA successfully detected both PMN

and DMN using the (low SM, high MO) combination. In

contrast, the high SM conditions, (12, 20), (9, 100), and

(12, 100), and (9, 80), (12, 80), and (12, 100), failed to

extract PMN and DMN, respectively.

In summary, only in the (low SM, high MO) condition,

could both PMN and DMN be successfully separated from

each other across all three algorithms. This finding indi-

cates that PMN–DMN segregation is independent of the

group ICA algorithm used. We also noticed that in the low

MO condition, it was more difficult to identify PMN than

Fig. 1 PMN and DMN templates with corresponding anchor points.

PMN template in red and anchor points in blue, located in precuneus

and posterior cingulate. DMN template in yellow and anchor points in

blue, located in posterior cingulate and paracingulate gyrus. Anterior

DMN template in green and anchor point in blue, located in

paracingulate gyrus. Posterior DMN template in pink and anchor

point in blue, located in posterior cingulate
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DMN. However, as the spatial smoothing size increased,

both PMN and DMN could not be identified due to the

blurring effects of spatial smoothing. The spatial compe-

tition between PMN and DMN under conditions of high

spatial smoothing became more evident when both PMN

and DMN were successfully obtained. For instance, the

posterior cluster size of DMN was greatly reduced due to

the influence of PMN in the (9, 20), (9, 40) and (12, 40)

conditions using TCgICA (shown in Supplementary

Figure 3). This same effect was observed in the other two

algorithms (gRAICAR and IVA-GL).

3.2 GoF, MWs, and IIS

The (low SM, high MO) conditions always presented the

highest GoF scores though the differences in GoF scores

remained small across conditions. This may partly be due

to the binarized templates and weighted RSN maps used in

Fig. 2 Flow chart presenting procedures for selecting independent components (ICs) corresponding to PMN and DMN

1848 Sci. Bull. (2016) 61(24):1844–1854
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the analyses. MWs increased with model order, regardless

of the algorithm used. Spatial smoothing can also raise the

MWs, especially when the MOs are high.

Generally, IIS increased with spatial smoothing across

the three ICA algorithms. The relationship between IIS and

MO is algorithm-dependent. For gRAICAR and IVA-GL,

IIS was not greatly influenced by MO, while for TCgICA, a

higher MO produced lower IIS. For gRAICAR, the IIS

differences between PMN and DMN in the high SM con-

dition were relatively large, indicating that the two net-

works were not equally reproducible using this method.

However, this was not the case for IVA-GL.

3.3 Age effects

Given the age range of the 61 subjects are relatively wide,

is it possible that the PMN–DMN segregation in the group-

level is in fact introduced by the inter-individual variabil-

ity? In order to tackle this issue, we re-did the analysis in

the four extreme conditions, i.e. (SM 0, MO 20), (SM 0,

MO 100), (SM 12, MO 20) and (SM 12, MO 100), on a

sub-sample with 29 subjects and an age range of 20–30.

The results obtained in the 61 subjects were replicated in

this more homogenous sample. The results were presented

in the Figure S4.

3.4 PMN–DMN overlaps at the individual level

The group-level results showed significant spatial overlap

between PMN and DMN, but it is unknown whether the

PMN–DMN overlap presents at individual subjects or it is

only due to averaging across subjects. This question is

important as it helps to explain why the PMN–DMN seg-

regation is rarely observed in seed-based functional con-

nectivity studies. We therefore examined the individual-

level variability of the PMN–DMN overlap under the

condition of SM 0 and MO 100, which is the optimal

combination to separate PMN and DMN according to the

above results.

Individual-level ICs were first Z-transformed to have zero

mean and unit standard deviation, and were thresholded at

Z[ 2. We divided the number of voxels in the PMN–DMN

overlap by the number of voxels in PMN, yielding an

overlap percentage for each subject. The mean and standard

deviation of this index in gRACAR, IVA-GL, and TCgICA

were 12.1 (4.4), 17.7 (3.4) and 8.2 (5.6) respectively. The

Table 1 The GoF, MWs and IIS of selected PMN/DMN under different combinations of model order and spatial smoothing levels using

gRAICAR

gRAICAR SM 0 SM 6 SM 9 SM 12

PMN DMN PMN DMN PMN DMN PMN DMN

MO 20

GoF – 0.47 – 0.51 – 0.47 – 0.53

MWs – 2.92 – 2.87 – 2.94 – 2.82

IISa – 0.21 (0.09) – 0.30 (0.12) – 0.30 (0.14) – 0.16 (0.12)

MO 40

GoF 0.40 0.55 0.48 0.52 0.47 – 0.45 0.49

MWs 3.42 3.18 3.83 3.16 3.81 – 3.80 3.52

IISa 0.05 (0.05) 0.20 (0.08) 0.28 (0.11) 0.28 (0.11) 0.36 (0.13) – 0.41 (0.13) 0.35 (0.14)

MO 60

GoF 0.47 0.56 0.50 0.57 0.49 0.57 0.47 –

MWs 3.91 3.26 4.09 3.30 4.08 3.19 4.13 –

IISa 0.10 (0.07) 0.22 (0.07) 0.33 (0.08) 0.28 (0.10) 0.39 (0.11) 0.22 (0.13) 0.43 (0.13) –

MO 80

GoF 0.49 0.56 0.50 0.55 0.47 0.43 0.45 –

MWs 4.14 3.27 4.22 3.28 4.27 3.81 4.29 –

IISa 0.15 (0.06) 0.20 (0.07) 0.30 (0.07) 0.22 (0.09) 0.25 (0.08) 0.06 (0.05) 0.18 (0.09) –

MO 100

GoF 0.49 0.55 0.49 0.54 0.48 0.51 0.45 0.44

MWs 4.12 3.23 4.21 3.31 4.26 3.37 4.29 3.45

IISa 0.14 (0.05) 0.20 (0.06) 0.31 (0.07) 0.21 (0.09) 0.38 (0.08) 0.08 (0.08) 0.40 (0.10) 0.06 (0.06)

‘‘–’’ indicates the corresponding IC was not found
a Data presented as: mean (standard deviation)
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fact that the standard deviation is small relative to the mean

of the overlap percentage indicates that the PMN–DMN

overlap can be stably observed across subjects.

4 Discussion

We examined the effects of spatial smoothing and model

order on segregation between PMN and DMN using group

ICA. We also took the type of algorithm used into con-

sideration. Our findings demonstrated that these two net-

works can be reliably functionally segregated using a

combination of low-level spatial smoothing during pre-

processing and high model order in the ICA.

Looking through the DMN-related studies, it is not

difficult to find an RSN with a spatial configuration similar

to PMN that was identified as (posterior) DMN [31, 32]. In

addition, some studies attributed the precuneus/posterior

cingulate cortex group differences to DMN [33]. The dis-

tinction between PMN and DMN is important for deter-

mining the role of DMN, as DMN is related to many brain

disorders [34, 35]. For instance, disruptions in DMN have

been consistently reported in AD (Alzheimer’s disease)

[31, 36, 37]. PMN is related to the processing of novel

memories. A core symptom of AD is memory loss; there-

fore, it is reasonable to inquire whether PMN is also

involved in the functional pathology of AD.

Both PMN and DMN could only be identified when a

combination of low spatial smoothing and high model

order were used. Under these conditions PMN and DMN

had the highest GoF across all three algorithms. Previous

studies have shown that more fine-grained RSNs can be

extracted when using a high model order [10]. This was

replicated in the present study. In fact, as the model order

increased, many more RSNs emerged, the majority of

which are still functionally unfamiliar to the community.

Spatial smoothing has been found to reduce functional

specificity, for instance, merging two activation clusters

into one [13], though its impact on group ICA is rarely

evaluated. As spatial smoothing size became larger, PMN

and DMN could no longer be successfully separated. Our

findings indicate that one should be careful when using

spatial smoothing, especially when functional specificity is

a priority. In the past, low model order and middle-to-high

spatial smoothing were widely applied in group ICA

analysis [11, 38]. Under these conditions PMN and DMN

can hardly be separated simultaneously, complicating the

interpretation of these findings.

Table 2 The GoF, MWs and IIS of selected PMN/DMN under different combinations of model order and spatial smoothing levels using IVA-

GL

IVA-GL SM 0 SM 6 SM 9 SM 12

PMN DMN PMN DMN PMN DMN PMN DMN

MO 20

GoF – 0.40 – 0.36 – 0.36 – 0.37

MWs – 3.19 – 3.07 – 3.02 – 2.96

IISa – 0.29 (0.05) – 0.49 (0.05) – 0.52 (0.08) – 0.57 (0.09)

MO 40

GoF – 0.45 0.46 – 0.46 0.35 – 0.37

MWs – 3.22 3.90 – 3.99 3.12 – 3.55

IISa – 0.29 (0.05) 0.47 (0.06) – 0.43 (0.09) 0.52 (0.07) – 0.44 (0.10)

MO 60

GoF 0.46 0.33 0.52 0.38 0.52 – 0.50 0.37

MWs 4.01 3.16 4.21 3.16 4.27 – 4.26 3.43

IISa 0.27 (0.04) 0.31 (0.04) 0.43 (0.06) 0.45 (0.06) 0.55 (0.06) – 0.57 (0.08) 0.61 (0.06)

MO 80

GoF 0.45 0.35 0.52 0.50 0.51 – 0.48 –

MWs 4.27 3.23 4.37 3.44 4.44 – 4.49 –

IISa 0.19 (0.04) 0.30 (0.04) 0.45 (0.06) 0.44 (0.06) 0.58 (0.06) – 0.66 (0.05) –

MO 100

GoF 0.42 0.49 0.51 0.56 0.50 0.37 – 0.51

MWs 4.23 3.37 4.26 3.36 4.30 4.30 – 3.33

IISa 0.19 (0.04) 0.33 (0.04) 0.47 (0.06) 0.52 (0.06) 0.60 (0.06) 0.67 (0.05) – 0.69 (0.08)

‘‘–’’ indicates the corresponding IC was not found
a Data presented as mean (standard deviation)
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To rule out the possibility that the PMN–DMN segre-

gation was totally introduced by the inter-individual vari-

ability of an RSN, for instance, DMN may have large

variability in different ages, we replicated the analysis in a

more homogenous sample. Our results and conclusions still

hold (see Supplementary Figure 4): PMN and DMN can be

stably separated only in the condition of low spatial

smoothing and high model order.

Currently, there are different ways of performing group-

level ICA applying different assumptions to the data. To

mitigate algorithm-dependent effects, three typical group

ICA algorithms were evaluated in the present study. We

observed that the three algorithms converged upon the

same conclusion regarding PMN and DMN segregation,

although there were algorithm-dependent effects on inter-

individual reproducibility. Using both simulated and real

data, previous studies have compared IVA-GL and

TCgICA, concluding that IVA-GL outperformed TCgICA

in capturing inter-individual variability [39, 40]. We also

found relatively higher inter-individual similarity using

IVA-GL when compared to the other two algorithms.

However, due to the lack of a ground truth, the difference

in inter-individual similarity across algorithms should be

interpreted cautiously. Therefore, we recommend the use

of a combination of multiple group ICA algorithms or

group ICA with other non-ICA algorithms to increase the

robustness and reliability of the findings, a major concern

in neuroimaging.

Individual variability of resting-state networks is of

great interest and the IIS was indeed observed to vary with

the choice of MO and SM. IIS increased with SM inde-

pendent of algorithms. Spatial smoothing makes the RSNs

‘‘larger’’ (more voxels passed the threshold), and thus more

common voxels will be obtained among individuals, which

would result in higher IIS. IIS decreased with MO in

TCgICA, while kept relatively stable with MO in gRAI-

CAR and IVA-GL. It is possible that TCgICA makes a

higher homogeneity assumption among individuals than

the other two algorithms. In the low MO, each RSN

incorporates many brain regions, which will be split into

functionally more homogenous smaller RSNs with the

increase of MO. As a result, in the higher MO, the

homogeneity assumption in TCgICA may not hold, leading

to lower IIS.

While seed-based functional connectivity has been

widely employed by the neuroimaging community due to

its ease of both understanding and performance, many

studies demonstrated its high dependencies on strategies of

Table 3 The GoF, MWs and IIS of selected PMN/DMN under different combinations of model order and spatial smoothing levels using

TCgICA

TCgICA SM 0 SM 6 SM 9 SM 12

PMN DMN PMN DMN PMN DMN PMN DMN

MO 20

GoF 0.39 0.49 0.42 0.43 0.43 0.42 – 0.46

MWs 7.30 6.54 7.73 6.74 7.71 6.93 – 7.53

IISa 0.16 (0.04) 0.17 (0.04) 0.45 (0.07) 0.42 (0.06) 0.53 (0.08) 0.51 (0.09) – 0.61 (0.08)

MO 40

GoF 0.47 0.47 – 0.46 0.41 0.44 0.47 0.46

MWs 9.05 7.27 – 9.13 9.04 7.22 9.74 6.80

IISa 0.08 (0.03) 0.09 (0.03) – 0.27 (0.06) 0.40 (0.07) 0.40 (0.09) 0.48 (0.08) 0.45 (0.09)

MO 60

GoF 0.47 0.55 0.49 – 0.48 0.35 0.46 –

MWs 10.56 7.60 11.15 – 11.39 7.45 11.05 –

IISa 0.05 (0.02) 0.05 (0.02) 0.17 (0.05) – 0.26 (0.07) 0.30 (0.07) 0.33 (0.08) –

MO 80

GoF 0.46 0.52 0.45 0.37 0.42 – 0.43 –

MWs 11.60 8.81 11.31 7.93 11.86 – 12.85 –

IISa 0.02 (0.01) 0.02 (0.01) 0.05 (0.03) 0.05 (0.03) 0.09 (0.06) – 0.16 (0.09) –

MO 100

GoF 0.46 0.51 0.41 0.44 – 0.33 – –

MWs 11.76 9.12 10.65 7.94 – 9.88 – –

IISa 0.01 (0.01) 0.01 (0.01) 0.03 (0.02) 0.04 (0.03) – 0.06 (0.04) – –

‘‘–’’ indicates the corresponding IC was not found
a Data presented as mean (standard deviation)
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Fig. 3 The selected IC maps representing PMN and DMN in four combinations of spatial smoothing levels and model orders across three

algorithms. A red border means that the RSN is identified as posterior DMN
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seed-selection, seed-location, and seed-shape. In this study,

spatial overlaps between PMN and DMN at the individual

level were stably observed across different algorithms.

Thus, it is of challenge to apply seed-based functional

connectivity analysis method to investigating PMN–DMN

difference, due to the ambiguity in defining seed regions.

Patten analysis such as ICA provides an effective approach

to segregate the two networks. Here, we demonstrate a

combination of group ICA parameters to achieve optimal

segregation of PMN and DMN.

In this study, we did not perform group ICA multiple

times to obtain robust RSNs as in some previous studies

[9, 10]. The considerations behind this were two-fold. First,

performing multiple runs of ICA and combining these

results is a challenging task in that it will induce unex-

pected biases while offering only limited improvements

[41–43]. Second, group-level ICA algorithms pool all

individual datasets and can efficiently counterbalance the

inherent indeterminacy of ICA analysis.

As both PMN and DMN include precuneus and posterior

cingulate cortex, it is less likely to set them apart based on

anatomical labels. The most obvious feature and difference

between PMN and the posterior part of DMN lie in the

spatial configuration. DMN has one cluster, which was

flanked by two clusters in PMN in the mid-line slice. The

aim to set the anchor points is to characterize this kind of

spatial features. The only uncertainty probably caused by

the anchor points is in the situation where PMN or/and

DMN were labeled as ‘‘Not-Found’’. To confirm that the

‘‘Not-Found’’-labeled PMN and DMN were truly non-ex-

istent, we selected PMN and DMN only by the highest

correlation with the templates and visually validated all the

results. The results were presented in the supplementary

materials.

In practice, other factors are also worth considering, for

instance, data quality and hypothesis testing methods. The

common use of spatial smoothing is based upon the

Gaussian kernel, which can blur the boundaries between

different signals. Recent advances in non-local smoothing

may improve PMN–DMN segregation due to the high level

of spatial smoothing [44, 45]. High model order and low

spatial smoothing may not be noise-resistant enough and

can therefore be sub-optimal if the fMRI data has a limited

number of time points or low signal-to-noise ratio.

The subjects in the present study were scanned with an

eye-closed resting-state condition and it is worthwhile to

examine the effects among different resting-state condi-

tions. However, we believed that the current results would

not likely to be greatly influenced by different resting

conditions, i.e. eye-open versus eye-closed. Firstly, the

PMN–DMN segregation has been identified in some stud-

ies where eye-open resting state fMRI datasets were uti-

lized [5, 7, 8]; Secondly, previous studies showed that

minor changes took place in resting-state networks among

different conditions [46].

Taken together, our study demonstrated that low spatial

smoothing and high model order is optimal when using

group ICA to segregate PMN from DMN. Under these

conditions, both PMN and DMN can be detected and

extracted without interference. Goodness-of-fit were high-

est in these conditions when compared to the other con-

ditions. Inter-individual reproducibility varied across

algorithms. Data quality and smoothing methods must be

considered in setting parameters to ensure the validity and

robustness of any derived findings.
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