Skip to main content
Log in

Genetically engineered organisms for bioremediation of pollutants in contaminated sites

  • Review
  • Environmental Sciences
  • Published:
Chinese Science Bulletin

Abstract

Environmental pollution is a major problem which affects biodiversity, public health and ecosystems worldwide. This issue cannot currently be solved using conventional technology because these treatments are expensive, ineffective and time consuming. Conventional methods focus unduly on the separation, rather than the destruction of contaminants. The use of genetically engineered organisms for bioremediation would be an environmentally-friendly and cost-effective alternative for the management and remediation of pollutants in contaminated sites. Different types of genetically engineered microbes have been developed through recombinant DNA and RNA technologies, these have been utilized for the removal of heavy metals and toxic substances from contaminated sites. Transgenic plants can also mobilize or degrade chlorinated solvent, xenobiotic compounds, explosives and phenolic substances. A symbiotic relationship between genetic engineered microbes and transgenic plants can enhance the effectiveness of bioremediation of contaminated sites. This review examines recent developments in the use of genetically engineered microbes and transgenic plants for the bioremediation of contaminated sites. This review will also identify the environmental factors which influence bioremediation by genetically engineered microbes and transgenic plants as well as suggesting future directions for research in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cervantes C, Gutierrezcorona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Google Scholar 

  2. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol, Article ID 402647, p. 20, doi:10.5402/2011/402647

  3. Stenuit B, Eyers L, Schuler L et al (2008) Emerging high-thought put approaches to analysis bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575

    Google Scholar 

  4. Dobson RS, Burgess JE (2007) Biological treatment of precious metal from refinery wastewater: a review. Miner Eng 20:519–532

    Google Scholar 

  5. Li Y, Li B (2011) Study on fungi–bacteria consortium bioremediation of petroleum contaminated mangrove sediments amended with mixed biosurfactants. Adv Mat Res 183–185:1163–1167

    Google Scholar 

  6. Rittmann BE, Hausner M, Loffler F et al (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40:1096–1103

    Google Scholar 

  7. Autry AR, Ellis GM (1992) Bioremediation: an effective remedial alternative for petroleum hydrocarbon contaminated soil. Environ Prog 11:318–323

    Google Scholar 

  8. Madigan MT, Martinko JM, Parker J (2003) Brock biología de los microorganismos, 10th edn. Pearson Educación S.A., Madrid, p 1096

    Google Scholar 

  9. Saval S (1998) La biorremediación como alternative para la limpieza de suelos y acuíferos. Ing Cienc Ambient 34:6–9

    Google Scholar 

  10. Eapen S, Singh S, D’Souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Google Scholar 

  11. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Google Scholar 

  12. Macek T, Kotrba P, Svatos A et al (2007) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Google Scholar 

  13. Panz K, Miksch K (2012) Phytoremediation od explosive (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manag 113:85–92

    Google Scholar 

  14. Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospectus and regulatory challenges. Technol Soc 32:331–335

    Google Scholar 

  15. Ogden R, Adams DA (1989) Recombinant DNA technology: applications in carolina tips, 52nd edn. Carolina Biological Supply Company, Burlington, pp 18–19

    Google Scholar 

  16. D’ Souza SF (2001) Microbial biosensors. Biosens Bioelect 16:337–353

    Google Scholar 

  17. Verma N, Singh M (2005) Biosensors for heavy metals. J Biomet 18:121–129

    Google Scholar 

  18. Bruschi M, Goulhen F (2006) New bioremediation technologies to remove heavy metals and radionuclides using Fe(III)-sulfate and sulfur reducing bacteria. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 35–55

    Google Scholar 

  19. Jackson WJ, Summers AO (1982) Biochemical characterization of HgCl2 inducible polypeptides encoded by the mer operon of plasmid R 100. J Bacteriol 151:962–970

    Google Scholar 

  20. Muhammad S, Muhammad S, Sarfraz H (2008) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Google Scholar 

  21. Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspective. Genet Eng Biotechnol J 3:1–20

    Google Scholar 

  22. Liu S, Zhang F, Chen J et al (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Google Scholar 

  23. Rugh CL (2004) Genetically engineered phytoremediation: one man’s trash is another man’s transgene. Trends Biotechnol 22:496–498

    Google Scholar 

  24. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Google Scholar 

  25. Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Google Scholar 

  26. Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Google Scholar 

  27. Singh JS, Abhilash PC, Singh HB et al (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Google Scholar 

  28. Gruiz K, Kriston E (1995) In situ bioremediation of hydrocarbons in soil. J Soil Contam 4:163–174

    Google Scholar 

  29. Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Google Scholar 

  30. Saadoun IMK, Al-Ghzawi ZD (2005) Bioremediation of petroleum contamination. Biorem Aquat Terr Ecosyst 132:173–212

    Google Scholar 

  31. Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1111

    Google Scholar 

  32. Silva E, Fialho AM, Sa-Correia I et al (2004) Combined bioaugmentation and biostimulation to cleanup soil contamined with high concentrations of atrazine. Environ Sci Technol 15–38:632–637

    Google Scholar 

  33. Colberg PJS, Young LY (1995) Anaerobic degradation of non halogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction. In: microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 307–330

  34. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Google Scholar 

  35. Furukawa K (2003) Super bugs for bioremediation. Trends Biotechnol 21:187–190

    Google Scholar 

  36. Bondarenko O, Rolova T, Kahru A et al (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors 8:6899–6923

    Google Scholar 

  37. Jan AT, Murtaza I, Ali A et al (2009) Mercury pollution: an emerging problem and potential bacterial remediation strategies. World J Microbiol Biotechnol 25:1529–1537

    Google Scholar 

  38. Ng SP, Davis B, Polombo EA et al (2009) Tn5051 like mer containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 7:2–38

    Google Scholar 

  39. Hasin AA, Gurman SJ, Murphy LM et al (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405

    Google Scholar 

  40. Pazirandeh M, Chrisey LA, Mauro JM et al (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    Google Scholar 

  41. Valls M, Atrian S, de Lorenzo V et al (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Google Scholar 

  42. Brim H, McFarlan SC, Fredrickson JK et al (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Google Scholar 

  43. Bae W, Chen W, Mulchandani A et al (2001) Genetic engineering of Escherichia coli for enhance uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338

    Google Scholar 

  44. Bae W, Wu C, Kostal J et al (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Google Scholar 

  45. Murtaza I, Dutt A, Ali A (2002) Biomolecular engineering of Escherichia coli organomercurial lyase gene and its expression. Indian J Biotech 1:117–120

    Google Scholar 

  46. Lopez A, Lazaro N, Morales S et al (2002) Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study. Water Air Soil Pollut 135:157–172

    Google Scholar 

  47. Sriprang R, Hayashi M, Ono H et al (2003) Enhanced accumulation of Cd2+ by Mesorhizobium transformed with a gene for phytochelatin synthase from Arabidopsis. Appl Env Microbiol 69:1791–1796

    Google Scholar 

  48. Ackerley DF, Donzalez CF, Keyhan M et al (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Google Scholar 

  49. Deng X, Li QB, Lu YH et al (2005) Genetic engineering of Escherichia coli SE5000 and its potential for Ni2+ bioremediation. Process Biochem 40:425–430

    Google Scholar 

  50. Zhao XW, Zhou MH, Li QB et al (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 40:1611–1616

    Google Scholar 

  51. Sasaki Y, Minakawa T, Miyazaki A et al (2005) Functional dissection of a mercuric ion transporter Mer C from Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem 69:1394–1402

    Google Scholar 

  52. Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204

    Google Scholar 

  53. Wu CH, Wood TK, Mulchandani A et al (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metal. Appl Environ Microbiol 72:1129–1134

    Google Scholar 

  54. Patel J, Zhang Q, Michael R et al (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160:232–243

    Google Scholar 

  55. Ivask A, Dubourguier HC, Pollumaa L et al (2011) Bioavailability of Cd in 110 polluted top soils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J Soils Sediments 11:231–237

    Google Scholar 

  56. Chen SL, Wilson DB (1997) Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation 8:97–103

    Google Scholar 

  57. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Google Scholar 

  58. Deckwer WD, Becker FU, Ledakowitcz S et al (2004) Microbial removal of ionic mercury in a three phase fluidzed bed reactor. Environ Sci Technol 38:1858–1865

    Google Scholar 

  59. De J, Sarker A, Rahman NS (2006) Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology 15:385–389

    Google Scholar 

  60. Ruiz ON, Alvarez D, Gongalez-Ruiz G et al (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:1–8

    Google Scholar 

  61. Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Crit Rev Microbiol 22:1–26

    Google Scholar 

  62. Chaurasia AK, Adhya TK, Apte SK (2013) Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol 149:439–445

    Google Scholar 

  63. Marconi AM, Kieboom J, deBont JAM (1997) Improving the catabolic functions in the toluene-resistant strain Pseudomonas putida S12. Biotechnol Lett 19:603–606

    Google Scholar 

  64. Fujita M, Ike M, Hioki JI et al (1995) Trichloroethylene degradation by genetically-engineered bacteria carrying coned phenol catabolic genes. J Ferment Bioeng 79:100–106

    Google Scholar 

  65. Srivastava NK, Jha MK, Mall ID et al (2010) Application of genetic engineering for chromium removal from industrial waste water. Int J Chem Biol Eng 3:153–158

    Google Scholar 

  66. Jackson BP, Seaman JC, Bertsch PM (2006) Fate of arsenic compounds in poultry litter upon land application. Chemosphere 65:2028–2034

    Google Scholar 

  67. Chen XP, Zhu YG, Hong MN et al (2008) Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ Toxicol Chem 27:881–887

    Google Scholar 

  68. Williams PN, Lei M, Sun GX et al (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642

    Google Scholar 

  69. Kostal JRY, Wu CH, Mulchandani A et al (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    Google Scholar 

  70. Fulkerson JF, Garner RM, Mobley HLT (1998) Conserved residues and motifs in the nixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. J Biol Chem 273:235–241

    Google Scholar 

  71. Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev/Microbiol 1:35–44

    Google Scholar 

  72. Chakrabarty AM (1985) Genetically manipulated microorganisms and their products in the oil service industries. Trends Biotechnol 1985(3):32–38

    Google Scholar 

  73. Crameri A, Stemmer WPC (1995) Combinatorial multiple cassette mutagenesis creates all the permutations of mutant and wildtype sequences. Bio Techniques 18:194–196

    Google Scholar 

  74. Crameri A, Whitehorn EA, Tate E et al (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Google Scholar 

  75. Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Google Scholar 

  76. Canada KA, Iwashita S, Shim H et al (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349

    Google Scholar 

  77. Rensing C, Newby DT, Pepper IL (2002) The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol Biochem 34:285–296

    Google Scholar 

  78. Dennis P (2005) Why the type of bacteria matter in bioremediation. Pollut Eng 37:22–37

    Google Scholar 

  79. Davison J (2002) Towards safer vectors for the field release of recombinant bacteria. Environ Biosafety Res 1:9–18

    Google Scholar 

  80. Marko B, Lampinen J, Karp MA (1995) Luminiscence based mercury biosensor. Anal Chem 67:667–669

    Google Scholar 

  81. Bakersmans C, Madsen EL (2002) Detection in Coal tar based contaminated ground water of mRNA transcripts related to naphthalene dioxygenase by FISH with tyramide signal amplification. J Microbiol Methods 50:75–84

    Google Scholar 

  82. Pandey G, Paul D, Jain RK (2005) Suicidal genetically engineered microorganisms for bioremediation—need and perspectives. Bio Essays 25:563–573

    Google Scholar 

  83. Liu Z, Jainhong Q, Hong X et al (2006) Construction of a genetically engineered organism for degrading organo phosphate and carbamate pesticides. Int Biodeterioration Biodegrad 58:65–69

    Google Scholar 

  84. Paitan Y, Biran D, Biran I et al (2003) On-line and in situ biosensors for monitoring environmental pollution. Biotechnol Adv 22:27–33

    Google Scholar 

  85. Leungsakul T, Keenan BG, Smets BF et al (2005) TNT and nitroaromatic compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. Strain DNT. Appl Microbiol Biotechnol 69:321–325

    Google Scholar 

  86. Timmis KN, Steffan RJ, Unterman R (1994) Designing microorganisms for the treatment of toxic wastes. Ann Rev Microbiol 48:525–557

    Google Scholar 

  87. Brazil GM, ckKenefi L, Callanan M et al (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    Google Scholar 

  88. Mason JR, Briganti F, Wild JR (1997) Protein engineering for improved biodegradation of recalcitrant pollutants. In: Wild JR et al (eds) Perspectives in bioremediation. Kluwer Academic, Dordrecht, pp 107–118

    Google Scholar 

  89. Poretsky RS, Bano N, Buchan A et al (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Google Scholar 

  90. Parro V, Moreno-Paz M, Gonzales-Toril M (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464

    Google Scholar 

  91. Richardson RE, Bhupathiraju VK, Song DL et al (2002) Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652–2662

    Google Scholar 

  92. Hendrickson ER, Payne JA, Young RM et al (2002) Molecular analysis of dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    Google Scholar 

  93. Loy A, Lehner A, Lee N et al (2002) Oligonucleotide microarray for 16SrRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryote sinthe environment. Appl Environ Microbiol 68:5064–5081

    Google Scholar 

  94. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  95. Fennell DE, Carroll AB, Gossett JM et al (2001) Assessment of indigenous reductive dechlorination potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839

    Google Scholar 

  96. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Google Scholar 

  97. Pollard AJ, Powell KD, Harper FA et al (2002) The genetic basis of metal hyper accumulation in plants. Crit Rev Plant Sci 21:539–566

    Google Scholar 

  98. Ma JF, Nomoto K (1996) Effective regulation of iron acquisition in graminaceous plants the role of mugineic acids as phytosiderophores. Physiol Plant 97:609–617

    Google Scholar 

  99. Ma LQ, Komar MK, Kong T et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Google Scholar 

  100. Eapen S, Shraddha S, D’Souza SF (2006) Phytoremediation of metals and radionuclides. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New York, pp 189–209

    Google Scholar 

  101. Chatthai M, Kaukinen KH, Tranbarger TJ et al (1997) The isolation of a novel metallothionein related cDNA expressed in somatic and zygotic embryos of Douglas fir: regulation of ABA, osmoticum and metal ions. Plant Mol Biol 1997(34):243–254

    Google Scholar 

  102. Zhou J, Goldsbrough PB (1995) Structure, organization and expression of metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328

    Google Scholar 

  103. Van der Zaal BJ, Neuteboom LW, Pinas JE et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Google Scholar 

  104. Hirschi KD, Korenkov VD, Wilganowski NL et al (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Google Scholar 

  105. Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:478–488

    Google Scholar 

  106. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Google Scholar 

  107. Pan X, Zhang B, Cobb GP (2005) Transgenic plants: environmental benefits and risks. Physiol Mol Biol Plants 11:13–32

    Google Scholar 

  108. Sandermann H (1994) Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogenetics 4:225–241

    Google Scholar 

  109. Raskin I (1996) Plant genetic engineering may help with environmental clean up. In: Proceedings of the National Academy of Sciences of the USA, vol 93, pp 3164–3166

  110. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Google Scholar 

  111. Kurumata M, Takahashi M, Sakamotoa A et al (2005) Tolerance to and uptake and degradation of 2,4,6 trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 60:272–278

    Google Scholar 

  112. Kumar S (2012) Phytoremediation of explosives using transgenic plants. J Pet Environ Biotechnol S4:1–2

    Google Scholar 

  113. Mohammadi M, Chalavi V, Novakova-Sura M et al (2007) Expression of bacterial biphenylchlorophenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Google Scholar 

  114. Francova K, Sura M, Macek T et al (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Fresen Environ Bull 12:309–313

    Google Scholar 

  115. Siminszky B, Corbin FT, Ward ER et al (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Nat Acad Sci USA 96:1750–1755

    Google Scholar 

  116. Limura Y, Ikeda S, Sonoki T et al (2002) Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251

    Google Scholar 

  117. Oller ALW, Agostini E, Talano MA et al (2005) Over expression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Google Scholar 

  118. Rylott EL, Jackson RG, Edwardsj J et al (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Google Scholar 

  119. French CJ, Rosser SJ, Davies GJ et al (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Google Scholar 

  120. McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 53–58

    Google Scholar 

  121. Mackova M, Dowling D, Macek T (eds) (2006) Phytoremediation and rhizoremediation. Theoretical background. Series: focus on Biotechnology. Springer, Dordrecht

    Google Scholar 

  122. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Google Scholar 

  123. Sriprang R, Murooka Y (2006) Accumulation and detoxification of metals by plants and microbes. In: Singh SN, Tripathi RD (eds) ‘Environmental bioremediation technologies. Springer, New York, pp 77–100

    Google Scholar 

  124. Rugh CL, Wilde HD, Stack NM et al (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Nat Acad Sci USA 93:3182–3187

    Google Scholar 

  125. Zhu YL, Pilon-Smits EAH, Tarun AS et al (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Google Scholar 

  126. Ohkawa H, Imaishi H, Shiota N (1999) Pesticide chemistry and biosciences. In: Brooks JT, Roberts TR (eds) The food-environment challenge. Royal Society of Chemistry, Cambridge, pp 259–264

    Google Scholar 

  127. Kawahigashi H, Hirose S, Ohkawa H et al (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84

    Google Scholar 

  128. Inui H, Ueyama Y, Shiota N et al (1999) Herbicide metabolism and cross tolerance in transgenic potato plants expressing human CYP1A1. Pesticide Biochem Physiol 64:33–46

    Google Scholar 

  129. Karavangeli M, Labrou NE, Clonis YD et al (2005) Development of transgenic tobacco plants over expressing maize glutathione-S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Google Scholar 

  130. Hannink NK, Rosser SJ, French CE et al (2001) Phyto-detoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Google Scholar 

  131. Travis ER, Hannink NK, Van dan Gast CJ et al (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861

    Google Scholar 

  132. Doty SL, Andrew JC, Moore AL et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci 104:16816–16821

    Google Scholar 

  133. Van Dillewijn P, Couselo JL, Corredoira E et al (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Google Scholar 

  134. Strand A, Foyer CH, Gustafsson P et al (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell Environ 26:523–535

    Google Scholar 

  135. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Google Scholar 

  136. Doty SL, Shang TQ, Wilson AM et al (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA 97:6287–6291

    Google Scholar 

  137. Gerhardt KE, Huang XD, Glick BR et al (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Google Scholar 

  138. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Google Scholar 

  139. Arshad M, Saleem M, Hussain S (2007) Perspecives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Google Scholar 

  140. Downie A (1997) Fixing a symbiotic circle. Nature 387:352–353

    Google Scholar 

  141. Sriprang R, Hayashi M, Yamashita M et al (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered Rhizobia. J Biotechnol 99:279–293

    Google Scholar 

  142. Ike MK, Nagamatsu A, Shioya M et al (2006) Purification, characterization and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Appl Microbiol Biotechnol 71:294–303

    Google Scholar 

  143. Beaudette LA, Cassidy MB, England L et al (2002) Bioremediation of soils. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley-Interscience, New York, pp 722–737

    Google Scholar 

  144. Sasikumar CS, Papinazath T (2003) Environmental management: Bioremediation of polluted environment In: Bunch MJ, Suresh VM, Kumaran TV (eds) Bioremediation of Recalcitrant Compounds, CRC Press, Boca Raton. Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 Dec, Chennai: Department of Geography, University of Madras and faculty Environmental Studies, York University, pp 465–469

  145. Bitton G (2005) Wastewater microbiology. Wiley-Liss, Wiley, Hoboken, pp 589–606

    Google Scholar 

  146. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526

    Google Scholar 

  147. Baptista SJ, Cammarota MC, Freire DDC (2005) Production of CO2 in crude oil bioremediation in clay soil. Braz Arch Biol Technol 48:249–255

    Google Scholar 

  148. Tabatabaee A, Assadi MM, Noohi AA et al (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran J Environ Health Sci Eng 2:6–12

    Google Scholar 

  149. Cho YG, Rhee SK, Lee ST (2000) Influence of environmental parameters on bioremediation of chlorophenol-contamianted soil by indigenous microorganisms. Environ Eng Res 5:165–173

    Google Scholar 

  150. Sag Y, Kutsal T (2000) Determination of the biosorption heats of heavy metal ions on Zoogloea ramiger and Rhizopusarrhizus. Biochem Eng J 6:145–151

    Google Scholar 

  151. Vijayaraghavan K, Yun YS (2007) Chemical modification and immobilization of Corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Ind Eng Chem Res 46:608–617

    Google Scholar 

  152. Balks MR, Paetzold RF, Kimble JM et al (2002) Effects of hydrocarbon spills on the temperature and moisture regimes of cryosols in the Ross Sea region. Antarct Sci 14:319–326

    Google Scholar 

  153. Machado MD, Soares EV, Helena MVM et al (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mat 180:347–353

    Google Scholar 

  154. Chaillan F, Chaineau CH, Point V et al (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:255–265

    Google Scholar 

  155. Wiltse CC, Rooney WL, Chen Z et al (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    Google Scholar 

  156. Goodin ID, Webber MD (1995) Persistence and fate of anthracene and benzo(a)pyrene inmunicipal sludge treated soil. J Environ Qual 24:271–278

    Google Scholar 

  157. Kamath R, Rentz JA, Schnoor JL et al (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis, vol 151. Elsevier, Amsterdam, pp 447–478

    Google Scholar 

  158. Tang J, Wang R, Niu X et al (2010) Characterization on the rhizoremediation of petroleum contaminated soil as affected by different influencing factors. Biogeosciences Discuss 7:4665–4688

    Google Scholar 

  159. Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    Google Scholar 

  160. Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Google Scholar 

  161. Gujarathi NP, Linden JC (2005) Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures. Biotechnol Bioeng 92:393–402

    Google Scholar 

  162. Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269:1851–1854

    Google Scholar 

  163. Krumme ML, Smith RL, Egestorff J et al (1994) Behavior of pollutant-degrading microorganisms in aquifers-predictions for genetically-engineered organisms. Environ Sci Technol 28:1134–1138

    Google Scholar 

  164. Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    Google Scholar 

  165. Hirsch PR, Spokes JD (1994) Survival and dispersion of genetically-modified Rhizobia in the field and genetic interactions with native strains. FEMS Microbiol Ecol 15:147–159

    Google Scholar 

  166. Sanchez-Romero JM, Diaz-Orejas R, de Lorenzo V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046

    Google Scholar 

  167. Singh A, Billingsley K, Ward O (2006) Composting: a potential safe process for disposal of genetically modified organisms. Crit Rev Biotechnol 26:1–16

    Google Scholar 

  168. Chang LW (1992) The concept of toxic metal/essential element interactions as a common bio-mechanism underlying metal toxicity. In: Lombardini JB, Schaffer SW, Azuma J (eds) Toxins in food. Plenum Press, New York, p 61

    Google Scholar 

  169. Alloway BJ, Ayres DC (1999) Heavy metals. In: Sherameti I, Varma A (eds) Chemical basis of environment air pollution. PWN, Warszawa, pp 218–246

    Google Scholar 

  170. Madejon P, Murillo JM, Maranon T et al (2003) Trace element and nutrient accumulation in sunflower plants 2 years after the Aznalcollar mine spill. Sci Total Environ 307:239–257

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Kebangsaan Malaysia for providing financial support for the publication of this manuscript under the UKM-AP-CMNB-2009/1 and DPP-2013-201 grant.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abul Kalam Azad.

About this article

Cite this article

Azad, M.A.K., Amin, L. & Sidik, N.M. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin. Sci. Bull. 59, 703–714 (2014). https://doi.org/10.1007/s11434-013-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0058-8

Keywords

Navigation