Skip to main content
Log in

Synthesis and ferroelectric properties of Nd doped multiferroic BiFeO3 nanotubes

  • Articles
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

Nd doped multiferroic BiFeO3 (Bi0.94Nd0.06FeO3 (BNF)) nanotubes were successfully synthesized by a sol-gel template method. Electron microscopy investigations exhibited that these nanotubes had straight and smooth profile with diameters of about 200 nm and wall thickness of about 20 nm. A perovskite-type structure of BNF was confirmed in the nanotubes by high-resolution transmission electron microscopy and selected area electron diffraction analysis. These nanotubes had high resistivity. The dielectric constant and dielectric loss of the nanotubes were 126 and 0.040 at 1 MHz, respectively. The ferroelectric properties of these BNF nanotubes were demonstrated with a remnant polarization of 48 μC/cm2 and a coercive electric field of 163 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nat Mater, 2007, 6: 13–20

    Article  Google Scholar 

  2. Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759–765

    Article  Google Scholar 

  3. Yu J, Chu J H. Progress and prospect for high temperature single-phased magnetic ferroelectrics. Chinese Sci Bull, 2008, 53: 2097–2112

    Article  Google Scholar 

  4. Fischer P, PoIomska M, Sosnowskag I, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C: Solid State Phys, 1980, 13: 1931–1940

    Article  Google Scholar 

  5. Liu X H, Xu Z, Qu S B, et al. Microstructure and properties of Ga-modified 0.7BiFeO3-0.3BaTiO3 solid solution. Chinese Sci Bull, 2007, 52: 2747–2752

    Article  Google Scholar 

  6. Uchida H, Ueno R, Funakubo H, et al. Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J Appl Phys, 2006, 100: 014106

    Article  Google Scholar 

  7. Yuan G L, Or S W. Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−x NdxFeO3 (x=0–0.15) ceramics. Appl Phys Lett, 2006, 88: 062905

    Article  Google Scholar 

  8. Zhang M F, Liu J M, Liu Z G. Microstructural characterization of nanosized YMnO3 powders: The size effect. Appl Phys A, 2004, 79: 1753–1756

    Google Scholar 

  9. Wei J, Xue D. Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol-gel process. Mater Res Bull, 2008, 43: 3368–3373

    Article  Google Scholar 

  10. Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 2004, 303: 661–663

    Article  Google Scholar 

  11. Park T J, Mao Y, Wong S S. Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem Commun, 2004, 23: 2708–2709

    Article  Google Scholar 

  12. Zhang X Y, Lai C W, Zhao X, et al. Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl Phys Lett, 2005, 87: 143102

    Article  Google Scholar 

  13. Wei J, Xue D, Xu Y. Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template process. Scrip Mater, 2008, 58: 45–48

    Article  Google Scholar 

  14. Martin C R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266: 1961–1966

    Article  Google Scholar 

  15. Yang H, Wang H, Yoon J, et al. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv Mater, 2009, 21: 3794–3798

    Article  Google Scholar 

  16. Liu J, Li M, Pei L, et al. Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition. J Phys D: Appl Phys, 2009, 42: 115409

    Article  Google Scholar 

  17. Yu B F, Li M, Wang J, et al. Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+. J Phys D: Appl Phys, 2008, 41: 185401

    Article  Google Scholar 

  18. Gao X S, Wang J. Thickness dependences of ferroelectric and dielectric properties in Bi3.15Nd0.85Ti3O12 thin films. J Appl Phys, 2006, 99: 074103

    Article  Google Scholar 

  19. Sherman V O, Tagantsev A K, Setter N, et al. Ferroelectric-dielectric tunable composites. J Appl Phys, 2006, 99: 074104

    Article  Google Scholar 

  20. Yuan G L, Or S W, Chan H L W, et al. Reduced ferroelectric coercivity in multiferroic Bi0.825Nd0.175FeO3 thin film. J Appl Phys, 2007, 101: 024106

    Article  Google Scholar 

  21. Karimi S, Reaney I M, Levin I, et al. Nd-doped BiFeO3 ceramics with antipolar order. Appl Phys Lett, 2009, 94: 112903

    Article  Google Scholar 

  22. Huang F, Lu X, Lin W, et al. Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl Phys Lett, 2006, 89: 242914

    Article  Google Scholar 

  23. Tagantsev A K, Stolichnov I, Colla E L, et al. Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J Appl Phys, 2001, 90: 1387–1402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MeiYa Li.

About this article

Cite this article

Wang, J., Li, M., Liu, X. et al. Synthesis and ferroelectric properties of Nd doped multiferroic BiFeO3 nanotubes. Chin. Sci. Bull. 55, 1594–1597 (2010). https://doi.org/10.1007/s11434-010-3203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3203-7

Keywords

Navigation