Skip to main content
Log in

Lion pride optimizer: An optimization algorithm inspired by lion pride behavior

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we report a novel optimization algorithm, lion pride optimizer (LPO), which is inspired by lion pride behavior. The framework is mainly based on lion prides’ evolution process and group living theory. In a lion pride, brutal competition of individuals happens among male lions both within and among prides; on the other hand, each member plays an important role in the persistence of a lion pride. Based on this framework, concepts from lion prides behavior, e.g., the strongest males occupy nearly all mating resources, and if a new cohort of males is able to take over a pride, they will seek to kill young cubs sired by their predecessors, are employed metaphorically to design optimum searching strategies for solving continuous optimization problems. From the studies of the algorithm property, it is found that the LPO algorithm is not sensitive to most parameters, which shows the robustness of the algorithm and the parameters are not problemdependent. Central tendency of the algorithm is not found. It is found that the pride update strategy and brutal competition of individuals are two main factors that contribute to the performance of LPO. According to the test results on 23 famous benchmark functions, the LPO algorithm has better performance than the other seven state-of-the-art algorithms on both unimodal and multimodal benchmark functions; in the test of high-dimensional multimodal problems, LPO outperforms the other five algorithms on all benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature, 2000, 406: 39–42

    Article  Google Scholar 

  2. He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput, 2009, 13: 973–990

    Article  Google Scholar 

  3. Barnard C J, Sibly R M. Producers and scroungers: A general model and its application to captive flocks of house sparrows. Anim Behav, 1981, 29: 543–550

    Article  Google Scholar 

  4. Holland J H. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975

    Google Scholar 

  5. Shiu Y Y, Chi K C. A genetic algorithm that adaptively mutates and never revisits. IEEE Trans Evol Comput, 2009, 13: 454–472

    Article  Google Scholar 

  6. Eiben A E, Smith J E. Introduction to Evolutionary Computing. New York: Springer, 2003

    MATH  Google Scholar 

  7. Yao X, Liu Y, Liu G. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3: 82–102

    Article  Google Scholar 

  8. Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Trans Evol Comput, 1999, 3: 124–141

    Article  Google Scholar 

  9. Mauldin M L. Maintaining diversity in genetic search. In: Proceedings of National Conference on Artificial Intelligence, Austin, USA, 1984. 247–250

  10. Davis L. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991

    Google Scholar 

  11. Friedrich T, Hebbinghaus N, Neumann F. Rigorous analyses of simple diversity mechanisms. In: Proceedings of Genetic Evolutionary Computation Conference, London, UK, 2007. 1219–1225

  12. Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of International Conference on Genetic Algorithms, Cambridge, USA, 1987. 41–49

  13. Alba E, Tomassini M. Parallelism and evolutionary algorithms. IEEE Trans Evol Comput, 2002, 6: 443–462

    Article  Google Scholar 

  14. Xin B, Chen J, Peng Z H, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci, 2010, 53: 980–989

    Article  MathSciNet  Google Scholar 

  15. Tassing R, Guo L, Liu J, et al. Gene sorting in differential evolution with cross-generation mutation. Sci China Inf Sci, 2011, 54: 268–278

    Article  MathSciNet  MATH  Google Scholar 

  16. David M, Manu D B, Raf H, et al. Classification with ant colony optimization. IEEE Trans Evol Comput, 2007, 11: 651–665

    Article  Google Scholar 

  17. AlRashidi M R, El-Hawary M E. A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput, 2009, 13: 913–918

    Article  Google Scholar 

  18. Valle Y D, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans Evol Comput, 2008, 12: 171–195

    Article  Google Scholar 

  19. Linhares A. Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans Evol Comput, 1999, 3: 147–152

    Article  Google Scholar 

  20. Ray T, Liew K M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput, 2003, 7: 386–396

    Article  Google Scholar 

  21. Laumanns M, Rudolph G, Schwefel H P. A spatial predator-prey approach to multiobjective optimization: A preliminary study. In: Proceedings of Parallel Problem Solving From Nature-PPSN V, Amsterdam, the Netherlands, 1998. 1498: 241–249

    Article  Google Scholar 

  22. Passino K M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag, 2002, 22: 52–67

    Article  Google Scholar 

  23. Dasgupta S, Das S, Abraham A, et al. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput, 2009, 13: 919–941

    Article  Google Scholar 

  24. Muller S D, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput, 2002, 6: 16–29

    Article  Google Scholar 

  25. McComb K, Packer C, Pusey A. Roaring and numerical assessment in contests between groups of female lions (Panthera leo). Anim Behav, 1994, 47: 379–387

    Article  Google Scholar 

  26. Parker C. Infanticide is no fallacy. Am Anthropol, 2000, 102: 829–831

    Article  Google Scholar 

  27. Bygott J D, Bertram B C R, Hanby J P. Male lions in large coalitions gains reproductive advantages. Nature, 1979, 282: 839–841

    Article  Google Scholar 

  28. Yao X, Liu Y. Fast evolution strategies. In: Proceedings of Evolutionary Programming VI. Berlin: Springer-Verlag, 1997. 151–161

    Google Scholar 

  29. Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput, 2006, 10: 281–295

    Article  Google Scholar 

  30. Pusey A E, Packer C. The evolution of sex biased dispersal in lions. Behaviour, 1987, 101: 275–310

    Article  Google Scholar 

  31. Mosser A, Packer C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim Behav, 2009, 78: 359–370

    Article  Google Scholar 

  32. Kissui B M, Mosser A, Packer C. Persistence and local extinction of lion prides in the Ngorongoro Crater, Tanzania. Popul Ecol, 2010, 52: 103–111

    Article  Google Scholar 

  33. Wolpert D H, Macready W G. No free lunch theorems for search. IEEE Trans Evol Comput, 1997, 1: 67–82

    Article  Google Scholar 

  34. Töm A, Zilinskas A. Global Optimization. LNCS, vol. 350. Berlin: Springer-Verlag, 1989

    Google Scholar 

  35. Fogel L J, Owens A J, Walsh M J. Artificial intelligence through a simulation of evolution. In: Maxfield M, Callahan A, Fogel L J, eds. Biophysics and Cybernetic Systems: Proceedings of the Second Cybernetic Sciences Symposium. Washington: Spartan Books, 1965. 131–155

    Google Scholar 

  36. Fogel D B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. New York: IEEE Press, 1995

    Google Scholar 

  37. Schwefel H P. Evolution and Optimum Seeking. New York: Wiley, 1995

  38. Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4. Piscataway: IEEE Press, 1995. 1942–1948

    Google Scholar 

  39. Yao X, Liu Y. Scaling up evolutionary programming algorithms. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, LNCS. Berlin: Springer-Verlag, 1998. 103–112

    Chapter  Google Scholar 

  40. Liu Y, Yao X, Zhao Q, et al. Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2001. 1101–1108

    Google Scholar 

  41. Lasserre J B. Global optimization with polynomials and the problem of moments. SIAM J Optimiz, 2001, 11: 796–817

    Article  MathSciNet  MATH  Google Scholar 

  42. Barhen J, Protopopescu V, Reister D. Trust: A deterministic algorithm for global optimization. Science, 1997, 276: 1094–1097

    Article  MathSciNet  MATH  Google Scholar 

  43. Reynolds C W. Flocks, herds and schools: A distributed behavioral model. Comput Graph, 1987, 21: 25–34

    Article  Google Scholar 

  44. Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of Chaos. Washington: AAAS Publications, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Jin, X. & Cheng, B. Lion pride optimizer: An optimization algorithm inspired by lion pride behavior. Sci. China Inf. Sci. 55, 2369–2389 (2012). https://doi.org/10.1007/s11432-012-4548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4548-0

Keywords

Navigation