Skip to main content
Log in

Dry electrode for the measurement of biopotential signals

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper introduces a kind of silicon-based dry electrode for measuring biological signals. It uses microneedle arrays to penetrate into the stratum corneum to reduce skin impedance. The dry electrode requires neither skin preparation nor the electrolytic gel, is easy to use and causes no skin allergy. Two different technologies are chosen to manufacture microneedle arrays of dry electrode. One is deep dry etching combined with isotropic wet etching. The other is mechanical dicing combined with chemical wet etching (including isotropic wet etching and anisotropic wet etching). Microneedle arrays are coated with metal and divided into 25 mm2 as dry electrode patch. Impedance testing shows that the impedance value of dry electrode can be comparable with that of commercial electrode in the 20 Hz-10 kHz frequency range. The steady-state visual evoked potential recording and analysis prove that the dry electrode can be used to detect electroencephalography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matteucci M, Carabalona R, Casella M, et al. Micropatterned dry electrodes for brain-computer interface. Microelectron Eng, 2007, 84: 1737–1740

    Article  Google Scholar 

  2. Griss P, Enoksson P, Tolvanen-Laakso H K, et al. Micromachined electrodes for biopotential measurements. J Microelectromech S, 2001, 10: 10–16

    Article  Google Scholar 

  3. Griss P, Tolvanen-Laakso H K, Merilainen P, et al. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Bio-med Eng, 2002, 49: 597–604

    Article  Google Scholar 

  4. Baek J, An J, Choi J, et al. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sensor Actuat A: Phys, 2008, 143: 423–429

    Google Scholar 

  5. Yu L M, Tay F, Guo D G, et al. A microfabricated electrode with hollow microneedles for ECG measurement. Sensor Actuat A: Phys, 2009, 151: 17–22

    Article  Google Scholar 

  6. Henry S, McAllister D V, Allen M G, et al. Micromachined needles for the transdermal delivery of drugs. In: Annual of International Conference on IEEE Microelectromech System. Germany: Heidelberg, 1998. 494–498

    Google Scholar 

  7. Ruffini G, Dunne S, Farres E, et al. A dry electrophysiology electrode using CNT arrays. Sensor Actuat A: Phys, 2006, 132: 34–41

    Article  Google Scholar 

  8. Mukerjee E, Collins S, Isseroff R, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensor Actuat A: Phys, 2004, 114: 267–275

    Article  Google Scholar 

  9. Rajaraman S, Henderson H T. A unique fabrication approach for microneedles using coherent porous silicon technology. Sensor Actuat B: Chem, 2005, 105: 443–448

    Article  Google Scholar 

  10. Wilke N, Hibert C, O’Brien J, et al. Silicon microneedle electrode array with temperature monitoring for electroporation. Sensor Actuat A: Phys, 2005, 123–124: 319–325

    Google Scholar 

  11. Wilke N, Mulcahy A, Ye S R, et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J, 2005, 36: 650–656

    Article  Google Scholar 

  12. Chandrasekaran S, Frazier A B. Characterization of surface micromachined metallic microneedles. J Microelectromech S, 2003, 12: 289–295

    Article  Google Scholar 

  13. Parker E R, Rao M P, Turner K L, et al. Bulk micromachined titanium microneedles. J Microelectromech S, 2007, 16: 289–295

    Article  Google Scholar 

  14. Aoyagi S, Izumi H, Isono Y, et al. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sensor Actuat A: Phys, 2007, 139: 293–302

    Article  Google Scholar 

  15. Han M, Kim D K, Kang S H, et al. Improvement inantigen-delivery using fabrication of a grooves-embedded microneedle array. Sensor Actuat B: Chem, 2009, 137: 274–280

    Article  Google Scholar 

  16. Moon S J, Lee S S, Lee H S, et al. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol, 2005, 11: 311–318

    Article  Google Scholar 

  17. Park J H, Yoon Y K, Choi S O, et al. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Bio-med Eng, 2007, 54: 903–913

    Article  Google Scholar 

  18. Ladenburger A, Reiser A, Konle J, et al. Regular silicon pillars and dichroic filters produced via particle-imprinted membranes. J Appl Phys, 2007, 101: 034302–034302-5

    Article  Google Scholar 

  19. Norazreen A A, Muhamad R B, Burhanuddin Y M. Process characterization of wet etching for high aspect ration microneedles development. Adv Mater Res, 2009, 74: 341–344

    Article  Google Scholar 

  20. Campbell P K, Jones K E, Huber R J, et al. A silicon-based, 3-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Bio-med Eng, 1991, 38: 758–768

    Article  Google Scholar 

  21. Shikida M, Hasada T, Sato K. Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J Micromech Microeng, 2006, 16: 2230–2239

    Article  Google Scholar 

  22. Resnik D, Vrtacnik D, Aljancic U, et al. Different aspect ratio pyramidal tips obtained by wet etching of (100) and (111) silicon. Microchem J, 2003, 34: 591–593

    Google Scholar 

  23. Wilke N, Morrissey A. Silicon microneedle formation using modified mask designs based on convex corner undercut. J Micromech Microeng, 2007, 17: 238–244

    Article  Google Scholar 

  24. Cheng X, Gao X, Gao S K, et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Bio-med Eng, 200, 49: 1181–1186

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiHua Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Pei, W., Guo, K. et al. Dry electrode for the measurement of biopotential signals. Sci. China Inf. Sci. 54, 2435–2442 (2011). https://doi.org/10.1007/s11432-011-4354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4354-0

Keywords

Navigation