Skip to main content
Log in

Inter- and intramolecular adhesion mechanisms of mussel foot proteins

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Mussel foot proteins (Mfps) secreted in the byssal plaque of marine mussels are widely researched for their relevance to mussel adhesion in water. As the abundant residue in the amino acid sequences of major adhesive proteins, 3,4-dihydroxyphenylalanine (Dopa) or its catecholic moiety plays a key role in both Mfp binding to surface and cohesive cross-linking of Mfps in byssal plaques. The binding performance of an Mfp significantly depends on the content and redox state of Dopa, whereas the types of interaction vary in line with different surface chemistries and pH conditions. Thorough understanding of mussel adhesion from a molecular perspective is crucial to promote the application of synthetic mussel-bionic adhesives. This article presents a brief review of the research progress on the adhesion mechanisms of Mfps, which further emphasizes the contributions of Dopa-mediated interactions and considers other amino acids and factors. The involved inter- and intramolecular interactions are responsible for not only the diverse adhesion capacities of an adhesive byssal plaque as mussel’s adhesion precursor but also the formation and properties of the plaque structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Israelachvili J N. Intermolecular and Surface Forces. San Diego: Academic Press, 2011

    Google Scholar 

  2. Bell E, Gosline J. Mechanical design of mussel byssus: Material yield enhances attachment strength. J Exp Biol, 1996, 199: 1005–1017

    Article  CAS  PubMed  Google Scholar 

  3. Ackerman J D, Cottrell C M, Ethier C R, et al. Attachment strength of zebra mussels on natural, polymeric, and mettallic materials. J Environ Eng, 1996, 122: 141–148

    Article  CAS  Google Scholar 

  4. Wilker J J. Marine bioinorganic materials: Mussels pumping iron. Curr Opin Chem Biol, 2010, 14: 276–283

    Article  CAS  PubMed  Google Scholar 

  5. Waite J H, Tanzer M L. Polyphenolic substance of mytilus edulis: Novel adhesive containing l-dopa and hydroxyproline. Science, 1981, 212: 1038–1040

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Waite J H. Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, mytilus edulis L. J Biol Chem, 1983, 258: 2911–2915

    Article  CAS  PubMed  Google Scholar 

  7. DeMartini D G, Errico J M, Sjoestroem S, et al. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. J R Soc Interface, 2017, 14: 20170151

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rees D J, Hanifi A, Obille A, et al. Fingerprinting of proteins that mediate quagga mussel adhesion using a de novo assembled foot transcriptome. Sci Rep, 2019, 9: 6305

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Waite J H. Mussel adhesion—essential footwork. J Exp Biol, 2017, 220: 517–530

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu M, Hwang J, Deming T J. Role of l-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc, 1999, 121: 5825–5826

    Article  CAS  Google Scholar 

  11. Li Y, Qin M, Li Y, et al. Single molecule evidence for the adaptive binding of dopa to different wet surfaces. Langmuir, 2014, 30: 4358–4366

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Yang H, Liu F, et al. Molecular interactions between dopa and surfaces with different functional groups: A chemical force microscopy study. RSC Adv, 2017, 7: 32518–32527

    Article  CAS  ADS  Google Scholar 

  13. Yu J, Kan Y, Rapp M, et al. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc Natl Acad Sci USA, 2013, 110: 15680–15685

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Wei W, Petrone L, Tan Y P, et al. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv Funct Mater, 2016, 26: 3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Utzig T, Stock P, Valtiner M. Resolving non-specific and specific adhesive interactions of catechols at solid/liquid interfaces at the molecular scale. Angew Chem Int Ed, 2016, 55: 9524–9528

    Article  CAS  Google Scholar 

  16. Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA, 2006, 103: 12999–13003

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Wang J, Tahir M N, Kappl M, et al. Influence of binding-site density in wet bioadhesion. Adv Mater, 2008, 20: 3872–3876

    Article  CAS  Google Scholar 

  18. Anderson T H, Yu J, Estrada A, et al. The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mater, 2010, 20: 4196–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang W, Yang F K, Pan Z, et al. Bio-inspired dopamine functio-nalization of polypyrrole for improved adhesion and conductivity. Macromol Rapid Commun, 2014, 35: 350–354

    Article  PubMed  Google Scholar 

  20. Das P, Reches M. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale, 2016, 8: 15309–15316

    Article  CAS  PubMed  Google Scholar 

  21. Zhong C, Gurry T, Cheng A A, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotech, 2014, 9: 858–866

    Article  CAS  ADS  Google Scholar 

  22. Saiz-Poseu J, Mancebo-Aracil J, Nador F, et al. The chemistry behind catechol-based adhesion. Angew Chem Int Ed, 2019, 58: 696–714

    Article  CAS  Google Scholar 

  23. Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Fant C, Sott K, Elwing H, et al. Adsorption behavior and en-zymatically or chemically induced cross-linking of a mussel adhesive protein. Biofouling, 2000, 16: 119–132

    Article  CAS  Google Scholar 

  25. Höök F, Kasemo B, Nylander T, et al. Variations in coupled water, viscoelastic properties,and film thickness of a mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring,ellipsometry,and surface plasmon resonance study. Anal Chem, 2001, 73: 5796–5804

    Article  PubMed  Google Scholar 

  26. Baty A M, Leavitt P K, Siedlecki C A, et al. Adsorption of adhesive proteins from the marine mussel, Mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spec-troscopy and atomic force microscopy. Langmuir, 1997, 13: 5702–5710

    Article  CAS  Google Scholar 

  27. Baty A M, Suci P., Tyler B J, et al. Investigation of mussel adhesive protein adsorption on polystyrene and poly(octadecyl methacrylate) using angle dependent XPS, ATR-FTIR, and A. M. J Colloid Interface Sci, 1996, 177: 307–315

    Article  CAS  ADS  Google Scholar 

  28. Suci P A, Geesey G G. Influence of sodium periodate and tyrosinase on binding of alginate to adlayers of mytilus edulis foot protein 1. J Colloid Interface Sci, 2000, 230: 340–348

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Fant C, Hedlund J, Höök F, et al. Investigation of adsorption and cross-linking of a mussel adhesive protein using attenuated total internal reflection fourier transform infrared spectroscopy (atr-ftir). J Adhes, 2010, 86: 25–38

    Article  CAS  Google Scholar 

  30. Wei W, Yu J, Broomell C, et al. Hydrophobic enhancement of dopa-mediated adhesion in a mussel foot protein. J Am Chem Soc, 2013, 135: 377–383

    Article  CAS  PubMed  Google Scholar 

  31. Mudunkotuwa I A, Minshid A A, Grassian V H. ATR-FTIR spec-troscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst, 2014, 139: 870–881

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Onyido I, Norris A R, Buncel E. Biomolecule-mercury interactions: Modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev, 2004, 104: 5911–5930

    Article  CAS  PubMed  Google Scholar 

  33. Hong S, Chen T, Zhu Y, et al. Live-cell stimulated raman scattering imaging of alkyne-tagged biomolecules. Angew Chem Int Ed, 2014, 53: 5827–5831

    Article  CAS  Google Scholar 

  34. Hwang D S, Harrington M J, Lu Q, et al. Mussel foot protein-1 (mcfp-1) interaction with titania surfaces. J Mater Chem, 2012, 22: 15530–15533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu J, Wei W, Menyo M S, et al. Adhesion of mussel foot protein-3 to TiO2 surfaces: The effect of pH. Biomacromolecules, 2013, 14: 1072–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science, 2010, 328: 216–220

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Willets K A, van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007, 58: 267–297

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Nie S. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science, 1997, 275: 1102–1106

    Article  CAS  PubMed  Google Scholar 

  39. Akemi Ooka A, Garrell R L. Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. Biopolymers, 2000, 57: 92–102

    Article  CAS  PubMed  Google Scholar 

  40. Lee N, Hummer D R, Sverjensky D A, et al. Speciation of l-DOPA on nanorutile as a function of pH and surface coverage using surface-enhanced Raman spectroscopy (SERS). Langmuir, 2012, 28: 17322–17330

    Article  CAS  PubMed  Google Scholar 

  41. Waite J H. Adhesion à la moule. Integrative Comp Biol, 2002, 42: 1172–1180

    Article  CAS  Google Scholar 

  42. Hansen D C, Corcoran S G, Waite J H. Enzymatic tempering of a mussel adhesive protein film. Langmuir, 1998, 14: 1139–1147

    Article  CAS  Google Scholar 

  43. Engel A, Müller D J. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol, 2000, 7: 715–718

    Article  CAS  PubMed  Google Scholar 

  44. Neuman K C, Nagy A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods, 2008, 5: 491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frank B P, Belfort G. Adhesion of mytilus edulis foot protein 1 on silica: Ionic effects on biofouling. Biotechnol Prog, 2002, 18: 580–586

    Article  CAS  PubMed  Google Scholar 

  46. Hwang D S, Yoo H J, Jun J H, et al. Expression of functional re-combinant mussel adhesive protein mgfp-5 in escherichia coli. Appl Environ MicroBiol, 2004, 70: 3352–3359

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. Nanoscale Adv, 2019, 1: 4246–4257

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 2005, 59: 1–152

    Article  CAS  ADS  Google Scholar 

  49. Tabor D, Winterton R H S. The direct measurement of normal and retarded van der Waals forces. Proc R Soc Lond A, 1969, 312: 435–450

    Article  CAS  ADS  Google Scholar 

  50. Oh D X, Shin S, Yoo H Y, et al. Surface forces apparatus and its applications for nanomechanics of underwater adhesives. Korean J Chem Eng, 2014, 31: 1306–1315

    Article  CAS  Google Scholar 

  51. Chough S K, Lee H J, Yoon S H. Marine Geology of Korean Seas. Elsevier, 2000

    Google Scholar 

  52. Si W, Zhang Y, Wu G, et al. DNA sequencing technology based on nanopore sensors by theoretical calculations and simulations. Chin Sci Bull, 2014, 59: 4929–4941

    Article  CAS  Google Scholar 

  53. Petrone L, Kumar A, Sutanto C N, et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat Commun, 2015, 6: 8737

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Levine Z A, Rapp M V, Wei W, et al. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces. Proc Natl Acad Sci USA, 2016, 113: 4332–4337

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. He C, Zhang H, Lin C, et al. A molecular dynamics study on the adsorption of a mussel protein on two different films: Polymer film and a sam. Chem Phys Lett, 2017, 676: 144–149

    Article  CAS  ADS  Google Scholar 

  56. Mian S A, Yang L M, Saha L C, et al. A fundamental understanding of catechol and water adsorption on a hydrophilic silica surface: Exploring the underwater adhesion mechanism of mussels on an atomic scale. Langmuir, 2014, 30: 6906–6914

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Liao M, Zhou J. Catechol-cation adhesion on silica surfaces: Molecular dynamics simulations. Phys Chem Chem Phys, 2017, 19: 29222–29231

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Liao M, Zhou J. Catechol and its derivatives adhesion on graphene: Insights from molecular dynamics simulations. J Phys Chem C, 2018, 122: 22965–22974

    Article  CAS  Google Scholar 

  59. Li S C, Chu L N, Gong X Q, et al. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science, 2010, 328: 882–884

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Leng C, Liu Y, Jenkins C, et al. Interfacial structure of a dopa-inspired adhesive polymer studied by sum frequency generation vi-brational spectroscopy. Langmuir, 2013, 29: 6659–6664

    Article  CAS  PubMed  Google Scholar 

  61. Mian S A, Saha L C, Jang J, et al. Density functional theory study of catechol adhesion on silica surfaces. J Phys Chem C, 2010, 114: 20793–20800

    Article  CAS  Google Scholar 

  62. Mian S A, Gao X, Nagase S, et al. Adsorption of catechol on a wet silica surface: Density functional theory study. Theor Chem Acc, 2011, 130: 333–339

    Article  CAS  Google Scholar 

  63. Mian S A, Khan Y. The adhesion mechanism of marine mussel foot protein: Adsorption of L-Dopa on α- and β-cristobalite silica using density functional theory. J Chem, 2017, 2017: 1–6

    Article  Google Scholar 

  64. Qin Z, Buehler M. Molecular mechanics of dihydroxyphenylalanine at a silica interface. Appl Phys Lett, 2012, 101: 083702

    Article  ADS  Google Scholar 

  65. Lee B P, Messersmith P B, Israelachvili J N, et al. Mussel-inspired adhesives and coatings. Annu Rev Mater Res, 2011, 41: 99–132

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Lin Q, Gourdon D, Sun C, et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA, 2007, 104: 3782–3786

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Yu J, Wei W, Danner E, et al. Effects of interfacial redox in mussel adhesive protein films on mica. Adv Mater, 2011, 23: 2362–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Danner E W, Kan Y, Hammer M U, et al. Adhesion of mussel foot protein mefp-5 to mica: An underwater superglue. Biochemistry, 2012, 51: 6511–6518

    Article  CAS  PubMed  Google Scholar 

  69. Lu Q, Danner E, Waite J H, et al. Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface, 2013, 10: 20120759

    Article  PubMed  PubMed Central  Google Scholar 

  70. Papov V V, Diamond T V, Biemann K, et al. Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem, 1995, 270: 20183–20192

    Article  CAS  PubMed  Google Scholar 

  71. Ahn B K, Lee D W, Israelachvili J N, et al. Surface-initiated self-healing of polymers in aqueous media. Nat Mater, 2014, 13: 867–872

    Article  CAS  PubMed  ADS  Google Scholar 

  72. Maier G P, Rapp M V, Waite J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015, 349: 628–632

    Article  CAS  PubMed  ADS  Google Scholar 

  73. Rapp M V, Maier G P, Dobbs H A, et al. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces. J Am Chem Soc, 2016, 138: 9013–9016

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Wang T, Xia L, et al. Single-molecule study of the synergistic effects of positive charges and dopa for wet adhesion. J Mater Chem B, 2017, 5: 4416–4420

    Article  CAS  PubMed  Google Scholar 

  75. Sever M J, Weisser J T, Monahan J, et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed, 2004, 43: 448–450

    Article  CAS  Google Scholar 

  76. Holten-Andersen N, Mates T E, Toprak M S, et al. Metals and the integrity of a biological coating: The cuticle of mussel byssus. Langmuir, 2009, 25: 3323–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li S, Xia Z, Chen Y, et al. Byssus structure and protein composition in the highly invasive fouling mussel limnoperna fortunei. Front Physiol, 2018, 9: 418

    Article  PubMed  PubMed Central  Google Scholar 

  78. Taylor S W, Luther G W, Waite J H. Polarographic and spectro-photometric investigation of iron(iii) complexation to 3,4-dihydrox-yphenylalanine-containing peptides and proteins from mytilus edulis. Inorg Chem, 1994, 33: 5819–5824

    Article  CAS  Google Scholar 

  79. Dalsin J L, Lin L, Tosatti S, et al. Protein resistance of titanium oxide surfaces modified by biologically inspired mpeg-dopa. Langmuir, 2005, 21: 640–646

    Article  CAS  PubMed  Google Scholar 

  80. Janković I A, Šaponjić Z V, Čomor M I, et al. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. J Phys Chem C, 2009, 113: 12645–12652

    Article  Google Scholar 

  81. Holten-Andersen N, Jaishankar A, Harrington M J, et al. Metal-coordination: Using one of nature’s tricks to control soft material mechanics. J Mater Chem B, 2014, 2: 2467–2472

    Article  CAS  PubMed  Google Scholar 

  82. Karpishin T B, Gebhard M S, Solomon E I, et al. Spectroscopic studies of the electronic structure of iron(III) tris(catecholates). J Am Chem Soc, 1991, 113: 2977–2984

    Article  CAS  Google Scholar 

  83. Lana-Villarreal T, Rodes A, Pérez J M, et al. A spectroscopic and electrochemical approach to the study of the interactions and pho-toinduced electron transfer between catechol and anatase nano-particles in aqueous solution. J Am Chem Soc, 2005, 127: 12601–12611

    Article  CAS  PubMed  Google Scholar 

  84. Keten S, Buehler M J. Geometric confinement governs the rupture strength of h-bond assemblies at a critical length scale. Nano Lett, 2008, 8: 743–748

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Li Y, Liu H, Wang T, et al. Single-molecule force spectroscopy reveals multiple binding modes between dopa and different rutile surfaces. ChemPhysChem, 2017, 18: 1466–1469

    Article  CAS  PubMed  Google Scholar 

  86. Xu Z. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types. Sci Rep, 2013, 3: 2914

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Yu M, Deming T J. Synthetic polypeptide mimics of marine ad-hesives. Macromolecules, 1998, 31: 4739–4745

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Zhang F, Pan J. Recent development of corrosion protection strategy based on mussel adhesive protein. Front Mater, 2019, 6: 207

    Article  ADS  Google Scholar 

  89. Hansen D C, Luther G. George W. I, Waite J H. The adsorption of the adhesive protein of the blue mussel mytilus edulis l onto type 304l stainless steel. J Colloid Interface Sci, 1994, 168: 206–216

    Article  CAS  ADS  Google Scholar 

  90. Yu F, Chen S, Chen Y, et al. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 stainless steel. J Mol Structure, 2010, 982: 152–161

    Article  CAS  ADS  Google Scholar 

  91. Sababi M, Zhang F, Krivosheeva O, et al. Thin composite films of mussel adhesive proteins and ceria nanoparticles on carbon steel for corrosion protection. J Electrochem Soc, 2012, 159: C364–C371

    Article  CAS  Google Scholar 

  92. Zhao H, Waite J H. Proteins in load-bearing junctions: The histidine-rich metal-binding protein of mussel byssus. Biochemistry, 2006, 45: 14223–14231

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt S, Reinecke A, Wojcik F, et al. Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules, 2014, 15: 1644–1652

    Article  CAS  PubMed  Google Scholar 

  94. Hwang D S, Zeng H, Masic A, et al. Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J Biol Chem, 2010, 285: 25850–25858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zeng H, Hwang D S, Israelachvili J N, et al. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci USA, 2010, 107: 12850–12853

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Hwang D S, Waite J H. Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: Analysis by circular di-chroism. Protein Sci, 2012, 21: 1689–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ninan L, Stroshine R L, Wilker J J, et al. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa. Acta Biomater, 2007, 3: 687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park J P, Song I T, Lee J, et al. Vanadyl-catecholamine hydrogels inspired by ascidians and mussels. Chem Mater, 2014, 27: 105–111

    Article  Google Scholar 

  99. Das S, Miller D R, Kaufman Y, et al. Tough coating proteins: Subtle sequence variation modulates cohesion. Biomacromolecules, 2015, 16: 1002–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Priemel T, Degtyar E, Dean M N, et al. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabri-cation. Nat Commun, 2017, 8: 14539

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  101. Holten-Andersen N, Fantner G E, Hohlbauch S, et al. Protective coatings on extensible biofibres. Nat Mater, 2007, 6: 669–672

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Holten-Andersen N, Zhao H, Waite J H. Stiff coatings on compliant biofibers: The cuticle of Mytilus californianus byssal threads. Biochemistry, 2009, 48: 2752–2759

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, Wen J, Qin M, et al. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater Sci Eng, 2017, 3: 979–989

    Article  CAS  PubMed  Google Scholar 

  104. Loizou E, Weisser J T, Dundigalla A, et al. Structural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive protein. Macromol Biosci, 2006, 6: 711–718

    Article  CAS  PubMed  Google Scholar 

  105. Holten-Andersen N, Harrington M J, Birkedal H, et al. Ph-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA, 2011, 108: 2651–2655

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Xu H, Nishida J, Wu H, et al. Structural effects of catechol-con-taining polystyrene gels based on a dual cross-linking approach. Soft Matter, 2013, 9: 1967–1974

    Article  CAS  ADS  Google Scholar 

  107. Holten-Andersen N, Waite J H. Mussel-designed protective coatings for compliant substrates. J Dent Res, 2008, 87: 701–709

    Article  CAS  PubMed  Google Scholar 

  108. Monahan J, Wilker J J. Specificity of metal ion cross-linking in marine mussel adhesives. Chem Commun, 2003, 1672

    Google Scholar 

  109. Monahan J, Wilker J J. Cross-linking the protein precursor of marine mussel adhesives: Bulk measurements and reagents for curing. Langmuir, 2004, 20: 3724–3729

    Article  CAS  PubMed  Google Scholar 

  110. Liu Q, Lu X, Li L, et al. Probing the reversible Fe3+-DOPA-mediated bridging interaction in mussel foot protein-1. J Phys Chem C, 2016, 120: 21670–21677

    Article  CAS  Google Scholar 

  111. Taylor S W, Chase D B, Emptage M H, et al. Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis. Inorg Chem, 1996, 35: 7572–7577

    Article  CAS  Google Scholar 

  112. Krogsgaard M, Behrens M A, Pedersen J S, et al. Self-healing mussel-inspired multi-ph-responsive hydrogels. Biomacromolecules, 2013, 14: 297–301

    Article  CAS  PubMed  Google Scholar 

  113. Avdeef A, Sofen S R, Bregante T L, et al. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for ca-techol models of enterobactin. J Am Chem Soc, 1978, 100: 5362–5370

    Article  CAS  Google Scholar 

  114. Yang B, Lim C, Hwang D S, et al. Switch of surface adhesion to cohesion by DOPA-Fe3+ complexation, in response to micro-environment at the mussel plaque/substrate interface. Chem Mater, 2016, 28: 7982–7989

    Article  CAS  Google Scholar 

  115. Aldred N, Ista L K, Callow M E, et al. Mussel (Mytilus edulis) byssus deposition in response to variations in surface wettability. J R Soc Interface, 2006, 3: 37–43

    Article  CAS  PubMed  Google Scholar 

  116. Huang S, Hou Q, Guo D, et al. Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. RSC Adv, 2017, 7: 39530–39538

    Article  CAS  ADS  Google Scholar 

  117. Nozaki Y, Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions: Establishment of a hydrophobicity scale. J Biol Chem, 1971, 246: 2211–2217

    Article  CAS  PubMed  Google Scholar 

  118. Kaur S, Narayanan A, Dalvi S, et al. Direct observation of the interplay of catechol binding and polymer hydrophobicity in a mussel-inspired elastomeric adhesive. ACS Cent Sci, 2018, 4: 1420–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Akdogan Y, Wei W, Huang K Y, et al. Intrinsic surface-drying properties of bioadhesive proteins. Angew Chem Int Ed, 2014, 53: 11253–11256

    Article  CAS  Google Scholar 

  120. Jelesarov I, Dürr E, Thomas R M, et al. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper). Biochemistry, 1998, 37: 7539–7550

    Article  CAS  PubMed  Google Scholar 

  121. Stewart R J, Ransom T C, Hlady V. Natural underwater adhesives. J Polym Sci B Polym Phys, 2011, 49: 757–771

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Lu Q, Hwang D S, Liu Y, et al. Molecular interactions of mussel protective coating protein, mcfp-1, from mytilus californianus. Bio-materials, 2012, 33: 1903–1911

    CAS  Google Scholar 

  123. Rzepecki L M, Waite J H. Aβ-dehydro-3,4-dihydroxyphenylalanine derivatives: Rate and mechanism of formation. Archives Biochem Biophys, 1991, 285: 27–36

    Article  CAS  Google Scholar 

  124. Mirshafian R, Wei W, Israelachvili J N, et al. α,β-dehydro-DOPA: A hidden participant in mussel adhesion. Biochemistry, 2016, 55: 743–750

    Article  CAS  PubMed  Google Scholar 

  125. Weidman S W, Kaiser E T. The mechanism of the periodate oxidation of aromatic systems. III. A kinetic study of the periodate oxidation of catechol. J Am Chem Soc, 1966, 88: 5820–5827

    Article  CAS  Google Scholar 

  126. Haemers S, Koper G J M, Frens G. Effect of oxidation rate on cross-linking of mussel adhesive proteins. Biomacromolecules, 2003, 4: 632–640

    Article  CAS  PubMed  Google Scholar 

  127. van der Leeden M C. Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins? Langmuir, 2005, 21: 11373–11379

    Article  PubMed  Google Scholar 

  128. Yu J, Wei W, Danner E, et al. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat Chem Biol, 2011, 7: 588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miller D R, Spahn J E, Waite J H. The staying power of adhesion-associated antioxidant activity in Mytilus californianus. J R Soc Interface, 2015, 12: 20150614

    Article  PubMed  PubMed Central  Google Scholar 

  130. Seo S, Das S, Zalicki P J, et al. Microphase behavior and enhanced wet-cohesion of synthetic copolyampholytes inspired by a mussel foot protein. J Am Chem Soc, 2015, 137: 9214–9217

    Article  CAS  PubMed  Google Scholar 

  131. Zhao H, Waite J H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem, 2006, 281: 26150–26158

    Article  CAS  PubMed  Google Scholar 

  132. Nicklisch S C T, Das S, Martinez Rodriguez N R, et al. Antioxidant efficacy and adhesion rescue by a recombinant mussel foot protein-6. Biotechnol Prog, 2013, 29: 1587–1593

    Article  CAS  PubMed  Google Scholar 

  133. Wang J, Suhre M H, Scheibel T. A mussel polyphenol oxidase-like protein shows thiol-mediated antioxidant activity. Eur Polym J, 2019, 113: 305–312

    Article  CAS  Google Scholar 

  134. Nicklisch S C T, Spahn J E, Zhou H, et al. Redox capacity of an extracellular matrix protein associated with adhesion in Mytilus ca-lifornianus. Biochemistry, 2016, 55: 2022–2030

    Article  CAS  PubMed  Google Scholar 

  135. Argust P. Distribution of boron in the environment. Biol Trace Elem Res, 1998, 66: 131–143

    Article  CAS  PubMed  Google Scholar 

  136. Waite J H, Qin X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry, 2001, 40: 2887–2893

    Article  CAS  PubMed  Google Scholar 

  137. Taylor S W. Chemoenzymatic synthesis of peptidyl 3,4-dihydrox-yphenylalanine for structure-activity relationships in marine invertebrate polypeptides. Anal Biochem, 2002, 302: 70–74

    Article  CAS  PubMed  Google Scholar 

  138. Lee B P, Huang K, Nunalee F N, et al. Synthesis of 3,4-dihydrox-yphenylalanine (dopa) containing monomers and their co-polymerization with peg-diacrylate to form hydrogels. J BioMater Sci Polym Ed, 2004, 15: 449–464

    Article  CAS  PubMed  Google Scholar 

  139. Kan Y, Danner E W, Israelachvili J N, et al. Boronate complex formation with dopa containing mussel adhesive protein retards ph-induced oxidation and enables adhesion to mica. PLoS ONE, 2014, 9: e108869

    Article  ADS  Google Scholar 

  140. George M N, Carrington E. Environmental post-processing increases the adhesion strength of mussel byssus adhesive. Biofouling, 2018, 34: 388–397

    Article  CAS  PubMed  Google Scholar 

  141. Guvendiren M, Brass D A, Messersmith P B, et al. Adhesion of dopa-functionalized model membranes to hard and soft surfaces. J Adhes, 2009, 85: 631–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang B, Kang D G, Seo J H, et al. A comparative study on the bulk adhesive strength of the recombinant mussel adhesive protein fp-3. Biofouling, 2013, 29: 483–490

    Article  CAS  PubMed  Google Scholar 

  143. Suci P A, Geesey G G. Comparison of adsorption behavior of two mytilus edulis foot proteins on three surfaces. Colloids Surfs B-Biointerfaces, 2001, 22: 159–168

    Article  CAS  Google Scholar 

  144. Suci P A, Geesey G G. Use of attenuated total internal reflection fourier transform infrared spectroscopy to investigate interactions between Mytilus edulis foot proteins at a surface. Langmuir, 2001, 17: 2538–2540

    Article  CAS  Google Scholar 

  145. Fant C, Elwing H, Höök F. The influence of cross-linking on protein-protein interactions in a marine adhesive: The case of two byssus plaque proteins from the blue mussel. Biomacromolecules, 2002, 3: 732–741

    Article  CAS  PubMed  Google Scholar 

  146. McDowell L M, Burzio L A, Waite J H, et al. Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem, 1999, 274: 20293–20295

    Article  CAS  PubMed  Google Scholar 

  147. Burzio L A, Waite J H. Cross-linking in adhesive quinoproteins: Studies with model decapeptides. Biochemistry, 2000, 39: 11147–11153

    Article  CAS  PubMed  Google Scholar 

  148. Hedlund J, Andersson M, Fant C, et al. Change of colloidal and surface properties of mytilus edulis foot protein 1 in the presence of an oxidation (NaIO4) or a complex-binding (Cu2+) agent. Bioma-cromolecules, 2009, 10: 845–849

    Article  CAS  Google Scholar 

  149. Burdine L, Gillette T G, Lin H J, et al. Periodate-triggered cross-linking of dopa-containing peptide-protein complexes. J Am Chem Soc, 2004, 126: 11442–11443

    Article  CAS  PubMed  Google Scholar 

  150. Liu B, Burdine L, Kodadek T. Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins. J Am Chem Soc, 2006, 128: 15228–15235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao H, Waite J H. Coating proteins: Structure and cross-linking in fp-1 from the green shell mussel Perna canaliculus. Biochemistry, 2005, 44: 15915–15923

    Article  CAS  PubMed  Google Scholar 

  152. Nicklisch S C T, Waite J H. Mini-review: The role of redox in dopa-mediated marine adhesion. Biofouling, 2012, 28: 865–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jang H G, Cox D D, Que L. A highly reactive functional model for the catechol dioxygenases. Structure and properties of [Fe(TPA)-DBC]BPh4. J Am Chem Soc, 1991, 113: 9200–9204

    Article  CAS  Google Scholar 

  154. Matin M A, Chitumalla R K, Lim M, et al. Density functional theory study on the cross-linking of mussel adhesive proteins. J Phys Chem B, 2015, 119: 5496–5504

    Article  CAS  PubMed  Google Scholar 

  155. Brooksby P A, Schiel D R, Abell A D. Electrochemistry of catechol terminated monolayers with Cu(II), Ni(II) and Fe(III) cations: A model for the marine adhesive interface. Langmuir, 2008, 24: 9074–9081

    Article  CAS  PubMed  Google Scholar 

  156. Barrett D G, Fullenkamp D E, He L, et al. Ph-based regulation of hydrogel mechanical properties through mussel-inspired chemistry and processing. Adv Funct Mater, 2013, 23: 1111–1119

    Article  CAS  PubMed  Google Scholar 

  157. Fullenkamp D E, Barrett D G, Miller D R, et al. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv, 2014, 4: 25127–25134

    Article  CAS  PubMed  ADS  Google Scholar 

  158. Li S, Chen Y, Gao Y, et al. Chemical oxidants affect byssus adhesion in the highly invasive fouling mussel limnoperna fortunei. Sci Total Environ, 2019, 646: 1367–1375

    Article  CAS  PubMed  ADS  Google Scholar 

  159. Dougherty D A. Cation-π interactions in chemistry and biology: A new view of benzene,phe,tyr,and trp. Science, 1996, 271: 163–168

    Article  CAS  PubMed  ADS  Google Scholar 

  160. Frank B P, Belfort G. Atomic force microscopy for low-adhesion surfaces: Thermodynamic criteria,critical surface tension,and inter-molecular forces. Langmuir, 2001, 17: 1905–1912

    Article  CAS  Google Scholar 

  161. Ma J C, Dougherty D A. The cation-π interaction. Chem Rev, 1997, 97: 1303–1324

    Article  CAS  PubMed  Google Scholar 

  162. Gallivan J P, Dougherty D A. A computational study of cation-π interactions vs salt bridges in aqueous media: Implications for protein engineering. J Am Chem Soc, 2000, 122: 870–874

    Article  CAS  Google Scholar 

  163. Kim S, Huang J, Lee Y, et al. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc Natl Acad Sci USA, 2016, 113: E847–E853

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim S, Yoo H Y, Huang J, et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater. ACS Nano, 2017, 11: 6764–6772

    Article  CAS  PubMed  Google Scholar 

  165. Yang B, Jin S, Park Y, et al. Coacervation of interfacial adhesive proteins for initial mussel adhesion to a wet surface. Small, 2018, 14: 1803377

    Article  Google Scholar 

  166. Zhao H, Sagert J, Hwang D S, et al. Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J Biol Chem, 2009, 284: 23344–23352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hwang D S, Zeng H, Lu Q, et al. Adhesion mechanism in a dopa-deficient foot protein from green mussels. Soft Matter, 2012, 8: 5640–5648

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  168. Kim S, Faghihnejad A, Lee Y, et al. Cation-π interaction in dopa-deficient mussel adhesive protein mfp-1. J Mater Chem B, 2015, 3: 738–743

    Article  CAS  PubMed  Google Scholar 

  169. Das S, Martinez Rodriguez N R, Wei W, et al. Peptide length and dopa determine iron-mediated cohesion of mussel foot proteins. Adv Funct Mater, 2015, 25: 5840–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lu Q, Oh D X, Lee Y, et al. Nanomechanics of cation-π interactions in aqueous solution. Angew Chem, 2013, 125: 4036–4040

    Article  ADS  Google Scholar 

  171. Gebbie M A, Wei W, Schrader A M, et al. Tuning underwater adhesion with cation-π interactions. Nat Chem, 2017, 9: 473–479

    Article  CAS  PubMed  Google Scholar 

  172. White J D, Wilker J J. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules, 2011, 44: 5085–5088

    Article  CAS  ADS  Google Scholar 

  173. Haemers S, van der Leeden M C, Nijman E J, et al. The degree of aggregation in solution controls the adsorbed amount of mussel adhesive proteins on a hydrophilic surface. Colloids Surfs A-Physi-cochem Eng Aspects, 2001, 190: 193–203

    Article  CAS  Google Scholar 

  174. Krivosheeva O, Dėdinaitė A, Claesson P M. Adsorption of mefp-1: Influence of ph on adsorption kinetics and adsorbed amount. J Colloid Interface Sci, 2012, 379: 107–113

    Article  CAS  PubMed  ADS  Google Scholar 

  175. Wei W, Tan Y, Martinez Rodriguez N R, et al. A mussel-derived one component adhesive coacervate. Acta Biomater, 2014, 10: 1663–1670

    Article  CAS  PubMed  Google Scholar 

  176. Wang J, Scheibel T. Coacervation of the recombinant Mytilus gal-loprovincialis foot protein-3b. Biomacromolecules, 2018, 19: 3612–3619

    Article  CAS  PubMed  Google Scholar 

  177. Haemers S, van der Leeden M C, Frens G. Coil dimensions of the mussel adhesive protein mefp-1. Biomaterials, 2005, 26: 1231–1236

    Article  CAS  PubMed  Google Scholar 

  178. Even M A, Wang J, Chen Z. Structural information of mussel adhesive protein mefp-3 acquired at various polymer/mefp-3 solution interfaces. Langmuir, 2008, 24: 5795–5801

    Article  CAS  PubMed  Google Scholar 

  179. Matos-Pérez C R, White J D, Wilker J J. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc, 2012, 134: 9498–9505

    Article  PubMed  PubMed Central  Google Scholar 

  180. Jenkins C L, Meredith H J, Wilker J J. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer. ACS Appl Mater Interfaces, 2013, 5: 5091–5096

    Article  CAS  PubMed  Google Scholar 

  181. Kim E, Dai B, Qiao J B, et al. Microbially synthesized repeats of mussel foot protein display enhanced underwater adhesion. ACS Appl Mater Interfaces, 2018, 10: 43003–43012

    Article  CAS  PubMed  Google Scholar 

  182. Ahn B K, Das S, Linstadt R, et al. High-performance mussel-inspired adhesives of reduced complexity. Nat Commun, 2015, 6: 8663

    Article  CAS  PubMed  ADS  Google Scholar 

  183. Kord Forooshani P, Lee B P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci Part A-Polym Chem, 2017, 55: 9–33

    Article  CAS  ADS  Google Scholar 

  184. Bilic G, Brubaker C, Messersmith P B, et al. Injectable candidate sealants for fetal membrane repair: Bonding and toxicity in vitro. Am J Obstetrics GynEcol, 2010, 202: 85.e1–85.e9

    Article  Google Scholar 

  185. Kim B J, Oh D X, Kim S, et al. Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules, 2014, 15: 1579–1585

    Article  CAS  PubMed  Google Scholar 

  186. Ren Y, Zhao X, Liang X, et al. Injectable hydrogel based on qua-ternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromolecules, 2017, 105: 1079–1087

    Article  CAS  Google Scholar 

  187. Barrett D G, Bushnell G G, Messersmith P B. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv Healthcare Mater, 2013, 2: 745–755

    Article  CAS  Google Scholar 

  188. Cui J, Yan Y, Such G K, et al. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 2012, 13: 2225–2228

    Article  CAS  PubMed  Google Scholar 

  189. Statz A R, Meagher R J, Barron A E, et al. New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc, 2005, 127: 7972–7973

    Article  CAS  PubMed  Google Scholar 

  190. Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448: 338–341

    Article  CAS  PubMed  ADS  Google Scholar 

  191. Zhang L, Wu J, Wang Y, et al. Combination of bioinspiration: A general route to superhydrophobic particles. J Am Chem Soc, 2012, 134: 9879–9881

    Article  CAS  PubMed  Google Scholar 

  192. Zhong D, Yang Q, Guo L, et al. Fusion of nacre, mussel, and lotus leaf: Bio-inspired graphene composite paper with multifunctional integration. Nanoscale, 2013, 5: 5758–5764

    Article  CAS  PubMed  ADS  Google Scholar 

  193. Rzepecki L M, Hansen K M, Waite J H. Characterization of a cy-stine-rich polyphenolic protein family from the blue mussel Mytilus edulis L. Biol Bull, 1992, 183: 123–137

    Article  CAS  PubMed  Google Scholar 

  194. Zhao H, Robertson N B, Jewhurst S A, et al. Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem, 2006, 281: 11090–11096

    Article  CAS  PubMed  Google Scholar 

  195. Krogsgaard M, Nue V, Birkedal H. Mussel-inspired materials: Self-healing through coordination chemistry. Chem Eur J, 2016, 22: 844–857

    Article  CAS  PubMed  Google Scholar 

  196. Hellio C, Thomas-Guyon H, Culioli G, et al. Marine antifoulants from bifurcaria bifurcata (phaeophyceae, cystoseiraceae) and other brown macroalgae. Biofouling, 2001, 17: 189–201

    Article  CAS  Google Scholar 

  197. Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials. Science, 2017, 357: 668–673

    Article  CAS  PubMed  ADS  Google Scholar 

  198. Venkatareddy N L, Wilke P, Ernst N, et al. Mussel-glue inspired adhesives: A study on the relevance ofl -Dopa and the function of the sequence at nanomaterial-peptide interfaces. Adv Mater Interfaces, 2019, 6: 1900501

    Article  Google Scholar 

  199. Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed, 2003, 42: 1210–1250

    Article  CAS  Google Scholar 

  200. Zhang J, Xiang L, Yan B, et al. Nanomechanics of anion-π interaction in aqueous solution. J Am Chem Soc, 2020, 142: 1710–1714

    Article  CAS  PubMed  Google Scholar 

  201. Ren H Y, Mizukami M, Kurihara K. Preparation of stable silica surfaces for surface forces measurement. Rev Sci Instrum, 2017, 88: 095108

    Article  PubMed  ADS  Google Scholar 

  202. Dobbs H A, Kaufman Y, Scott J, et al. Ultra-smooth, chemically functional silica surfaces for surface interaction measurements and optical/interferometry-based techniques. Adv Eng Mater, 2018, 20: 1700630

    Article  Google Scholar 

  203. Kristiansen K, Donaldson Jr S H, Berkson Z J, et al. Multimodal miniature surface forces apparatus (μSFA) for interfacial science measurements. Langmuir, 2019, 35: 15500–15514

    Article  CAS  PubMed  Google Scholar 

  204. de Aguiar H B, McGraw J D, Donaldson Jr S. H. Interface-sensitive raman microspectroscopy of water via confinement with a multi-modal miniature surface forces apparatus. Langmuir, 2019, 35: 15543–15551

    Article  PubMed  Google Scholar 

  205. Desmond K W, Zacchia N A, Waite J H, et al. Dynamics of mussel plaque detachment. Soft Matter, 2015, 11: 6832–6839

    Article  CAS  PubMed  ADS  Google Scholar 

  206. Wilhelm M H, Filippidi E, Waite J H, et al. Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques. Soft Matter, 2017, 13: 7381–7388

    Article  CAS  PubMed  ADS  Google Scholar 

  207. Cohen N, Waite J H, McMeeking R M, et al. Force distribution and multiscale mechanics in the mussel byssus. Phil Trans R Soc B, 2019, 374: 20190202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunFei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, Y., Wei, Z., Tan, Q. et al. Inter- and intramolecular adhesion mechanisms of mussel foot proteins. Sci. China Technol. Sci. 63, 1675–1698 (2020). https://doi.org/10.1007/s11431-019-1541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1541-8

Keywords

Navigation