Skip to main content
Log in

Topological prime

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper describes a general method, called topological prime, to stitch functional groups to a substrate of entropic polymer network. The precursor of a topological primer contains polymers, crosslinkers, and coupling agents. When the precursor is applied on the surface of the substrate, the crosslinkers link the primer polymers into a primer network, in topological entanglement with the substrate network, while the coupling agents link the primer network to the functional groups. The use of topological prime is demonstrated by priming a hydrophobic elastomer of an arbitrary shape for hydrophilic coating. We describe an approach that fulfills two fundamental requirements: wetting and adhesion. The coated elastomer maintains hydrophilicity and lubricity after stretch, scratch, swell, and slide. As a further demonstration, a hydrogel substrate is primed for hydrophobic coating. Topological prime opens an enormous space for applications in engineering and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong J P. Why are double network hydrogels so tough? Soft Matter, 2010, 6: 2583–2590

    Google Scholar 

  2. Zhao X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter, 2014, 10: 672–687

    Google Scholar 

  3. Long R, Hui C Y. Fracture toughness of hydrogels: Measurement and interpretation. Soft Matter, 2016, 12: 8069–8086

    Google Scholar 

  4. Creton C, Ciccotti M. Fracture and adhesion of soft materials: A review. Rep Prog Phys, 2016, 79: 046601

    Google Scholar 

  5. Bai R, Yang J, Suo Z. Fatigue of hydrogels. Eur J Mech-A/Solids, 2019, 74: 337–370

    Google Scholar 

  6. Rowley J A, Madlambayan G, Mooney D J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20: 45–53

    Google Scholar 

  7. Cheng H, Yue K, Kazemzadeh-Narbat M, et al. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces, 2017, 9: 11428–11439

    Google Scholar 

  8. Blacklow S O, Li J, Freedman B R, et al. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci Adv, 2019, 5: eaaw3963

    Google Scholar 

  9. Li J, Celiz A D, Yang J, et al. Tough adhesives for diverse wet surfaces. Science, 2017, 357: 378–381

    Google Scholar 

  10. Faxälv L, Ekblad T, Liedberg B, et al. Blood compatibility of photografted hydrogel coatings. Acta Biomater, 2010, 6: 2599–2608

    Google Scholar 

  11. Butruk B, Trzaskowski M, Ciach T. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction. Mater Sci Eng-C, 2012, 32: 1601–1609

    Google Scholar 

  12. Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Google Scholar 

  13. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Google Scholar 

  14. Wirthl D, Pichler R, Drack M, et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci Adv, 2017, 3: e1700053

    Google Scholar 

  15. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev, 2019, 48: 1642–1667

    Google Scholar 

  16. Sheng H, Wang X, Kong N, et al. Neural interfaces by hydrogels. Extreme Mech Lett, 2019, 30: 100510

    Google Scholar 

  17. Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. Proc Natl Acad Sci USA, 2011, 108: 20400–20403

    Google Scholar 

  18. Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish. Sci Adv, 2017, 3: e1602045

    Google Scholar 

  19. Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442: 368–373

    Google Scholar 

  20. Yang C H, Chen B, Lu J J, et al. Ionic cable. Extreme Mech Lett, 2015, 3: 59–65

    Google Scholar 

  21. Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors. Science, 2013, 341: 984–987

    Google Scholar 

  22. Yuk H, Zhang T, Parada G A, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat Commun, 2016, 7: 12028

    Google Scholar 

  23. Yu Y, Yuk H, Parada G A, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv Mater, 2019, 31: 1807101

    Google Scholar 

  24. Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: A review and prospective. Compos Part B-Eng, 2017, 110: 442–458

    Google Scholar 

  25. Sun J Y, Keplinger C, Whitesides G M, et al. Ionic skin. Adv Mater, 2014, 26: 7608–7614

    Google Scholar 

  26. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater, 2018, 3: 125–142

    Google Scholar 

  27. Ekblad T, Bergstrom G, Ederth T, et al. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules, 2008, 9: 2775–2783

    Google Scholar 

  28. Liu M, Wang S, Wei Z, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater, 2009, 21: 665–669

    Google Scholar 

  29. Lin L, Yi H, Guo X, et al. Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater. Sci China Chem, 2018, 61: 64–70

    Google Scholar 

  30. Takahashi R, Shimano K, Okazaki H, et al. Tough particle-based double network hydrogels for functional solid surface coatings. Adv Mater Interfaces, 2018, 5: 1801018

    Google Scholar 

  31. Murosaki T, Ahmed N, Gong J P. Antifouling properties of hydrogels. Sci Tech Adv Mater, 2012, 12: 064706

    Google Scholar 

  32. Zander Z K, Becker M L. Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett, 2017, 7: 16–25

    Google Scholar 

  33. Gokaltun A, Yarmush M L, Asatekin A, et al. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology, 2017, 05: 1–12

    Google Scholar 

  34. Makamba H, Hsieh Y Y, Sung W C, et al. Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Anal Chem, 2005, 77: 3971–3978

    Google Scholar 

  35. Siow K S, Kumar S, Griesser H J. Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings—A review. Plasma Process Polym, 2015, 12: 8–24

    Google Scholar 

  36. Berdichevsky Y, Khandurina J, Guttman A, et al. UV/ozone modification ofpoly(dimethylsiloxane) microfluidic channels. Sens Actuat B-Chem, 2004, 97: 402–408

    Google Scholar 

  37. Hu S, Ren X, Bachman M, et al. Surface-directed, graft polymerization within microfluidic channels. Anal Chem, 2004, 76: 1865–1870

    Google Scholar 

  38. Yao X, Liu J, Yang C, et al. Hydrogel paint. Adv Mater, 2019, 31: 1903062

    Google Scholar 

  39. Liu Q, Nian G, Yang C, et al. Bonding dissimilar polymer networks in various manufacturing processes. Nat Commun, 2018, 9: 846

    Google Scholar 

  40. Le Floch P, Yao X, Liu Q, et al. Wearable and washable conductors for active textiles. ACS Appl Mater Interfaces, 2017, 9: 25542–25552

    Google Scholar 

  41. Wang Z, Xiang C, Yao X, et al. Stretchable materials of high toughness and low hysteresis. Proc Natl Acad Sci USA, 2019, 116: 5967–5972

    Google Scholar 

  42. Çetinkaya O, Demirci G, Mergo P. Effect of the different chain transfer agents on molecular weight and optical properties of poly (methyl methacrylate). Optical Mater, 2017, 70: 25–30

    Google Scholar 

  43. Tian K, Bae J, Bakarich S E, et al. 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv Mater, 2017, 29: 1604827

    Google Scholar 

  44. Tan S H, Nguyen N T, Chua Y C, et al. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane micro-channel. Biomicrofluidics, 2010, 4: 032204

    Google Scholar 

  45. Yang J, Bai R, Suo Z. Topological adhesion of wet materials. Adv Mater, 2018, 30: 1800671

    Google Scholar 

  46. Yang J, Bai R, Li J, et al. Design molecular topology for wet-dry adhesion. ACS Appl Mater Interfaces, 2019, 11: 24802–24811

    Google Scholar 

  47. Chen B, Yang J, Bai R, et al. Molecular staples for tough and stretchable adhesion in integrated soft materials. Adv Healthcare Mater, 2019, 8: 1900810

    Google Scholar 

  48. Steck J, Yang J, Suo Z. Covalent topological adhesion. ACS Macro Lett, 2019, 8: 754–758

    Google Scholar 

  49. Yang H, Li C, Tang J, et al. Strong and degradable adhesion of hydrogels. ACS Appl Bio Mater, 2019, 2: 1781–1786

    Google Scholar 

  50. Gao Y, Wu K, Suo Z. Photodetachable adhesion. Adv Mater, 2018, 333: 1806948

    Google Scholar 

  51. Merlitz H, He G L, Wu C X, et al. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules, 2008, 41: 5070–5072

    Google Scholar 

  52. Tyng L Y, Ramli M R, Othman M B H, et al. Effect of crosslink density on the refractive index of a polysiloxane network based on 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane. Polym Int, 2013, 62: 382–389

    Google Scholar 

  53. Kalcioglu Z I, Mahmoodian R, Hu Y, et al. From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter, 2012, 8: 3393–3398

    Google Scholar 

  54. Gong J P, Kagata G, Osada Y. Friction of gels. 4. Friction on charged gels. J Phys Chem B, 1999, 103: 6007–6014

    Google Scholar 

  55. Tada T, Kaneko D, Gong J P, et al. Surface friction of poly(dimethyl siloxane) gel and its transition phenomenon. Tribol Lett, 2004, 17: 505–511

    Google Scholar 

  56. Yashima S, Takase N, Kurokawa T, et al. Friction of hydrogels with controlled surface roughness on solid flat substrates. Soft Matter, 2014, 10: 3192–3199

    Google Scholar 

  57. Vogl O, Tirrell D. Functional polymers with biologically active groups. J Macromol Sci Chem, 1979, 13: 415–439

    Google Scholar 

  58. Fréchet J M. Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy. Science, 1994, 263: 1710–1715

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Suo.

Additional information

The work at Harvard was supported by National Science Foundation, Materials Research Science and Engineering Centers (Grant No. DMR-14-20570). Yang X X and Liu J J are visiting students at Harvard University supported by the China Scholarship Council.

Supporting Information

Topological prime

Supplementary material, approximately 4.91 MB.

Supplementary material, approximately 4.91 MB.

Supplementary material, approximately 4.85 MB.

Supplementary material, approximately 5.61 MB.

Supplementary material, approximately 5.85 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, C., Liu, J. et al. Topological prime. Sci. China Technol. Sci. 63, 1314–1322 (2020). https://doi.org/10.1007/s11431-019-1498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1498-y

Keywords

Navigation