Skip to main content
Log in

Triple-negative breast cancer: new treatment strategies in the era of precision medicine

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) remains the most aggressive cluster of all breast cancers, which is due to its rapid progression, high probabilities of early recurrence, and distant metastasis resistant to standard treatment. Following the advances in cancer genomics and transcriptomics that can illustrate the comprehensive profiling of this heterogeneous disease, it is now possible to identify different subclasses of TNBC according to both intrinsic signals and extrinsic microenvironment, which have a huge influence on predicting response to established therapies and picking up novel therapeutic targets for each cluster. In this review, we summarize basic characteristics and critical subtyping systems of TNBC, and particularly discuss newly found prospective targets and relevant medications, which were proved promising in clinical trials, thus shedding light on the future development of precision treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S., Diamond, J.R., Hamilton, E., Pohlmann, P.R., Tolaney, S.M., Chang, C.W., Zhang, W., Iizuka, K., Foster, P.G., Molinero, L., et al. (2019a). Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up. JAMA Oncol 5, 334–342.

    PubMed  Google Scholar 

  • Adams, S., Gatti-Mays, M.E., Kalinsky, K., Korde, L.A., Sharon, E., Amiri-Kordestani, L., Bear, H., McArthur, H.L., Frank, E., Perlmutter, J., et al. (2019b). Current landscape of immunotherapy in breast cancer. JAMA Oncol 5, 1205.

    PubMed  PubMed Central  Google Scholar 

  • Adams, S., Loi, S., Toppmeyer, D., Cescon, D.W., De Laurentiis, M., Nanda, R., Winer, E.P., Mukai, H., Tamura, K., Armstrong, A., et al. (2019c). Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol 30, 405–411.

    CAS  PubMed  Google Scholar 

  • Adams, S., Schmid, P., Rugo, H.S., Winer, E.P., Loirat, D., Awada, A., Cescon, D.W., Iwata, H., Campone, M., Nanda, R., et al. (2019d). Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol 30, 397–404.

    CAS  PubMed  Google Scholar 

  • Afghahi, A., Purington, N., Han, S.S., Desai, M., Pierson, E., Mathur, M.B., Seto, T., Thompson, C.A., Rigdon, J., Telli, M.L., et al. (2018). Higher absolute lymphocyte counts predict lower mortality from early-stage triple-negative breast cancer. Clin Cancer Res 24, 2851–2858.

    PubMed  PubMed Central  Google Scholar 

  • Asghar, U.S., Barr, A.R., Cutts, R., Beaney, M., Babina, I., Sampath, D., Giltnane, J., Lacap, J.A., Crocker, L., Young, A., et al. (2017). Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res 23, 5561–5572.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baluk, P., Hashizume, H., and McDonald, D.M. (2005). Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15, 102–111.

    CAS  PubMed  Google Scholar 

  • Bardia, A., Mayer, I.A., Diamond, J.R., Moroose, R.L., Isakoff, S.J., Starodub, A.N., Shah, N.C., O’Shaughnessy, J., Kalinsky, K., Guarino, M., et al. (2017). Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 35, 2141–2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr, A.R., Heldt, F.S., Zhang, T., Bakal, C., and Novák, B. (2016). A dynamical framework for the all-or-none G1/S transition. Cell Syst 2, 27–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels, S., van Luttikhuizen, J.L., Christgen, M., Mägel, L., Luft, A., Hänzelmann, S., Lehmann, U., Schlegelberger, B., Leo, F., Steinemann, D., et al. (2018). CDKN2A loss and PIK3CA mutation in myoepitheliallike metaplastic breast cancer. J Pathol 245, 373–383.

    CAS  PubMed  Google Scholar 

  • Basho, R.K., Gilcrease, M., Murthy, R.K., Helgason, T., Karp, D.D., Meric-Bernstam, F., Hess, K.R., Herbrich, S.M., Valero, V., Albarracin, C., et al. (2017). Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer. JAMA Oncol 3, 509–515.

    PubMed  Google Scholar 

  • Becht, E., Giraldo, N.A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., Selves, J., Laurent-Puig, P., Sautès-Fridman, C., Fridman, W.H., et al. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17, 218.

    PubMed  PubMed Central  Google Scholar 

  • Bell, R., Brown, J., Parmar, M., Toi, M., Suter, T., Steger, G.G., Pivot, X., Mackey, J., Jackisch, C., Dent, R., et al. (2017). Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann Oncol 28, 754–760.

    CAS  PubMed  Google Scholar 

  • Bernier, C., Soliman, A., Gravel, M., Dankner, M., Savage, P., Petrecca, K., Park, M., Siegel, P.M., Shore, G.C., and Roulston, A. (2018). DZ-2384 has a superior preclinical profile to taxanes for the treatment of triple-negative breast cancer and is synergistic with anti-CTLA-4 immunotherapy. Anti-Cancer Drugs 29, 774–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchini, G., Balko, J.M., Mayer, I.A., Sanders, M.E., and Gianni, L. (2016). Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13, 674–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla, L., Ben-Aharon, I., Vidal, L., Gafter-Gvili, A., Leibovici, L., and Stemmer, S.M. (2010). Dose-dense chemotherapy in nonmetastatic breast cancer: a systematic review and meta-analysis of randomized controlled trials. J Natl Cancer Inst 102, 1845–1854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brufsky, A., Valero, V., Tiangco, B., Dakhil, S., Brize, A., Rugo, H.S., Rivera, R., Duenne, A., Bousfoul, N., and Yardley, D.A. (2012). Second-line bevacizumab-containing therapy in patients with triple-negative breast cancer: subgroup analysis of the RIBBON-2 trial. Breast Cancer Res Treat 133, 1067–1075.

    CAS  PubMed  Google Scholar 

  • Brufsky, A.M., Hurvitz, S., Perez, E., Swamy, R., Valero, V., O’Neill, V., and Rugo, H.S. (2011). RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29, 4286–4293.

    CAS  PubMed  Google Scholar 

  • Burstein, M.D., Tsimelzon, A., Poage, G.M., Covington, K.R., Contreras, A., Fuqua, S.A.W., Savage, M.I., Osborne, C.K., Hilsenbeck, S.G., Chang, J.C., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21, 1688–1698.

    CAS  PubMed  Google Scholar 

  • Caldon, C.E., Sergio, C.M., Kang, J., Muthukaruppan, A., Boersma, M.N., Stone, A., Barraclough, J., Lee, C.S., Black, M.A., Miller, L.D., et al. (2012). Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Mol Cancer Therapeutics 11, 1488–1499.

    CAS  Google Scholar 

  • Cameron, D., Brown, J., Dent, R., Jackisch, C., Mackey, J., Pivot, X., Steger, G.G., Suter, T.M., Toi, M., Parmar, M., et al. (2013). Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol 14, 933–942.

    CAS  PubMed  Google Scholar 

  • Cao, L., Xu, C., Xiang, G., Liu, F., Liu, X., Li, C., Liu, J., Meng, Q., Jiao, J., and Niu, Y. (2018). AR-PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer. Mol Cancer 17, 136.

    PubMed  PubMed Central  Google Scholar 

  • Carey, L., Winer, E., Viale, G., Cameron, D., and Gianni, L. (2010). Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7, 683–692.

    PubMed  Google Scholar 

  • Chen, K., Pan, Z., Zhu, L., Hu, T., Peng, M., Jia, W., Su, F., Li, S., and Song, E. (2018). Comparison of breast-conserving surgery and mastectomy in early breast cancer using observational data revisited: a propensity score-matched analysis. Sci China Life Sci 61, 1528–1536.

    PubMed  Google Scholar 

  • Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., and He, J. (2016). Cancer statistics in China, 2015. CA Cancer J Clin 66, 115–132.

    PubMed  Google Scholar 

  • Citron, M.L., Berry, D.A., Cirrincione, C., Hudis, C., Winer, E.P., Gradishar, W.J., Davidson, N.E., Martino, S., Livingston, R., Ingle, J. N., et al. (2003). Cancer statistics in China, 2015. J Clin Oncol 21, 1431–1439.

    CAS  PubMed  Google Scholar 

  • Coffelt, S.B., Kersten, K., Doornebal, C.W., Weiden, J., Vrijland, K., Hau, C.S., Verstegen, N.J.M., Ciampricotti, M., Hawinkels, L.J.A.C., Jonkers, J., et al. (2015). IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortazar, P., Zhang, L., Untch, M., Mehta, K., Costantino, J.P., Wolmark, N., Bonnefoi, H., Cameron, D., Gianni, L., Valagussa, P., et al. (2014). Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172. doi{https://doi.org/10.1002/ijc.32266}.

    PubMed  Google Scholar 

  • Coussy, F., de Koning, L., Lavigne, M., Bernard, V., Ouine, B., Boulai, A., El Botty, R., Dahmani, A., Montaudon, E., Assayag, F., et al. (2019). A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer. Int J Cancer 145, 1902–1912.

    CAS  PubMed  Google Scholar 

  • Deng, J., Wang, E.S., Jenkins, R.W., Li, S., Dries, R., Yates, K., Chhabra, S., Huang, W., Liu, H., Aref, A.R., et al. (2018). CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov 8, 216–233.

    CAS  PubMed  Google Scholar 

  • Dent, R., Trudeau, M., Pritchard, K.I., Hanna, W.M., Kahn, H.K., Sawka, C.A., Lickley, L.A., Rawlinson, E., Sun, P., and Narod, S.A. (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13, 4429–4434.

    PubMed  Google Scholar 

  • Desmedt, C., Salgado, R., Fornili, M., Pruneri, G., Van den Eynden, G., Zoppoli, G., Rothé, F., Buisseret, L., Garaud, S., Willard-Gallo, K., et al. (2018). Immune infiltration in invasive lobular breast cancer. J Natl Cancer Inst 110, 768–776.

    PubMed  PubMed Central  Google Scholar 

  • Dieci, M.V., Tsvetkova, V., Griguolo, G., Miglietta, F., Mantiero, M., Tasca, G., Cumerlato, E., Giorgi, C.A., Giarratano, T., Faggioni, G., et al. (2019). Androgen receptor expression and association with distant disease-free survival in triple negative breast cancer: analysis of 263 patients treated with standard therapy for stage I-III disease. Front Oncol 9, 452.

    PubMed  PubMed Central  Google Scholar 

  • Dirix, L.Y., Takacs, I., Jerusalem, G., Nikolinakos, P., Arkenau, H.T., Forero-Torres, A., Boccia, R., Lippman, M.E., Somer, R., Smakal, M., et al. (2018). Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167, 671–686.

    CAS  PubMed  Google Scholar 

  • Dominguez, C., McCampbell, K.K., David, J.M., and Palena, C. (2017). Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2.

  • Du, Y., Yamaguchi, H., Wei, Y., Hsu, J.L., Wang, H.L., Hsu, Y.H., Lin, W. C., Yu, W.H., Leonard, P.G., Lee Iv, G.R., et al. (2016). Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med 22, 194–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Echavarria, I., López-Tarruella, S., Picornell, A., García-Saenz, J.Á., Jerez, Y., Hoadley, K., Gómez, H.L., Moreno, F., Monte-Millan, M.D., Márquez-Rodas, I., et al. (2018). Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann’s refined classification. Clin Cancer Res 24, 1845–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eiermann, W., Pienkowski, T., Crown, J., Sadeghi, S., Martin, M., Chan, A., Saleh, M., Sehdev, S., Provencher, L., Semiglazov, V., et al. (2011). Phase III study of doxorubicin/cyclophosphamide with concomitant versus sequential docetaxel as adjuvant treatment in patients with human epidermal growth factor receptor 2-normal, node-positive breast cancer: BCIRG-005 trial. J Clin Oncol 29, 3877–3884.

    CAS  PubMed  Google Scholar 

  • Emens, L.A., Cruz, C., Eder, J.P., Braiteh, F., Chung, C., Tolaney, S.M., Kuter, I., Nanda, R., Cassier, P.A., Delord, J.P., et al. (2019). Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer. JAMA Oncol 5, 74–82.

    PubMed  Google Scholar 

  • Evans, R., Flores-Borja, F., Nassiri, S., Miranda, E., Lawler, K., Grigoriadis, A., Monypenny, J., Gillet, C., Owen, J., Gordon, P., et al. (2019). Integrin-mediated macrophage adhesion promotes lymphovascular dissemination in breast cancer. Cell Rep 27, 1967–1978.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasching, P.A., Loibl, S., Hu, C., Hart, S.N., Shimelis, H., Moore, R., Schem, C., Tesch, H., Untch, M., Hilfrich, J., et al. (2018). BRCA1/2 mutations and bevacizumab in the neoadjuvant treatment of breast cancer: response and prognosis results in patients with triple-negative breast cancer from the GeparQuinto Study. J Clin Oncol 36, 2281–2287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Li, L., Zhang, N., Liu, J., Zhang, L., Gao, H., Wang, G., Li, Y., Zhang, Y., Li, X., et al. (2017). Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene 36, 2775–2790.

    CAS  PubMed  Google Scholar 

  • Finn, R.S., Crown, J.P., Lang, I., Boer, K., Bondarenko, I.M., Kulyk, S.O., Ettl, J., Patel, R., Pinter, T., Schmidt, M., et al. (2015). The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16, 25–35.

    CAS  PubMed  Google Scholar 

  • Finn, R.S., Martin, M., Rugo, H.S., Jones, S., Im, S.A., Gelmon, K., Harbeck, N., Lipatov, O.N., Walshe, J.M., Moulder, S., et al. (2016). Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375, 1925–1936.

    CAS  PubMed  Google Scholar 

  • Foidart, P., Yip, C., Radermacher, J., Blacher, S., Lienard, M., Montero-Ruiz, L., Maquoi, E., Montaudon, E., Château-Joubert, S., Collignon, J., et al. (2019). Expression of MT4-MMP, EGFR, and RB in triple-negative breast cancer strongly sensitizes tumors to erlotinib and palbociclib combination therapy. Clin Cancer Res 25, 1838–1850.

    CAS  PubMed  Google Scholar 

  • Foulkes, W.D., Smith, I.E., and Reis-Filho, J.S. (2010). Triple-negative breast cancer. N Engl J Med 363, 1938–1948.

    CAS  PubMed  Google Scholar 

  • Ganesan, P., Moulder, S., Lee, J.J., Janku, F., Valero, V., Zinner, R.G., Naing, A., Fu, S., Tsimberidou, A.M., Hong, D., et al. (2014). Triple-negative breast cancer patients treated at MD Anderson Cancer Center in phase I trials: improved outcomes with combination chemotherapy and targeted agents. Mol Cancer Ther 13, 3175–3184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Castro, A.C., Lin, N.U., and Polyak, K. (2019). Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9, 176–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geoerger, B., Bourdeaut, F., DuBois, S.G., Fischer, M., Geller, J.I., Gottardo, N.G., Marabelle, A., Pearson, A.D.J., Modak, S., Cash, T., et al. (2017). A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res 23, 2433–2441.

    CAS  PubMed  Google Scholar 

  • Gerber, B., Loibl, S., Eidtmann, H., Rezai, M., Fasching, P.A., Tesch, H., Eggemann, H., Schrader, I., Kittel, K., Hanusch, C., et al. (2013). Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol 24, 2978–2984.

    CAS  PubMed  Google Scholar 

  • Gewinner, C., Wang, Z.C., Richardson, A., Teruya-Feldstein, J., Etemadmoghadam, D., Bowtell, D., Barretina, J., Lin, W.M., Rameh, L., Salmena, L., et al. (2009). Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16, 115–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano, M., Schettini, F., Rognoni, C., Milani, M., Jerusalem, G., Bachelot, T., De Laurentiis, M., Thomas, G., De Placido, P., Arpino, G., et al. (2019). Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol 20, 1360–1369.

    CAS  PubMed  Google Scholar 

  • Gligorov, J., Doval, D., Bines, J., Alba, E., Cortes, P., Pierga, J.Y., Gupta, V., Costa, R., Srock, S., de Ducla, S., et al. (2014). Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): a randomised, open-label, phase 3 trial. Lancet Oncol 15, 1351–1360.

    CAS  PubMed  Google Scholar 

  • Goel, S., DeCristo, M.J., Watt, A.C., BrinJones, H., Sceneay, J., Li, B.B., Khan, N., Ubellacker, J.M., Xie, S., Metzger-Filho, O., et al. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goel, S., and Tolaney, S.M. (2019). CDK4/6 inhibitors in breast cancer: a role in triple-negative disease? Lancet Oncol 20, 1479–1481.

    PubMed  Google Scholar 

  • Golshan, M., Cirrincione, C.T., Sikov, W.M., Berry, D.A., Jasinski, S., Weisberg, T.F., Somlo, G., Hudis, C., Winer, E., and Ollila, D.W. (2015). Impact of neoadjuvant chemotherapy in stage II-III triple negative breast cancer on eligibility for breast-conserving surgery and breast conservation rates. Ann Surg 262, 434–439; discussion 438–439.

    PubMed  Google Scholar 

  • Gordon, V., and Banerji, S. (2013). Molecular pathways: PI3K pathway targets in triple-negative breast cancers. Clin Cancer Res 19, 3738–3744.

    CAS  PubMed  Google Scholar 

  • Goswami, K.K., Ghosh, T., Ghosh, S., Sarkar, M., Bose, A., and Baral, R. (2017). Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol 316, 1–10.

    CAS  PubMed  Google Scholar 

  • Grellety, T., Callens, C., Richard, E., Briaux, A., Vélasco, V., Pulido, M., Gonçalves, A., Gestraud, P., MacGrogan, G., Bonnefoi, H., et al. (2019). Enhancing abiraterone acetate efficacy in androgen receptor-positive triple-negative breast cancer: Chk1 as a potential target. Clin Cancer Res 25, 856–867.

    CAS  PubMed  Google Scholar 

  • Gucalp, A., Tolaney, S., Isakoff, S.J., Ingle, J.N., Liu, M.C., Carey, L.A., Blackwell, K., Rugo, H., Nabell, L., Forero, A., et al. (2013). Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res 19, 5505–5512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnen, E., Lederer, B., Hauke, J., Loibl, S., Kröber, S., Schneeweiss, A., Denkert, C., Fasching, P.A., Blohmer, J.U., Jackisch, C., et al. (2017). Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer. JAMA Oncol 3, 1378–1385.

    PubMed  PubMed Central  Google Scholar 

  • Hammond, M.E.H., Hayes, D.F., Dowsett, M., Allred, D.C., Hagerty, K.L., Badve, S., Fitzgibbons, P.L., Francis, G., Goldstein, N.S., Hayes, M., et al. (2010). American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28, 2784–2795.

    PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    CAS  PubMed  Google Scholar 

  • Harbeck, N., and Gnant, M. (2017). Breast cancer. Lancet 389, 1134–1150.

    PubMed  Google Scholar 

  • Hayes, D.F. (2019). Further progress for patients with breast cancer. N Engl J Med 380, 676–677.

    PubMed  Google Scholar 

  • Heimes, A.S., and Schmidt, M. (2019). Atezolizumab for the treatment of triple-negative breast cancer. Exp Opin Invest Drugs 28, 1–5.

    CAS  Google Scholar 

  • Helleday, T. (2011). The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5, 387–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, I.C., Berry, D.A., Demetri, G.D., Cirrincione, C.T., Goldstein, L.J., Martino, S., Ingle, J.N., Cooper, M.R., Hayes, D.F., Tkaczuk, K.H., et al. (2003). Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21, 976–983.

    CAS  PubMed  Google Scholar 

  • Herrera-Abreu, M.T., Palafox, M., Asghar, U., Rivas, M.A., Cutts, R.J., Garcia-Murillas, I., Pearson, A., Guzman, M., Rodriguez, O., Grueso, J., et al. (2016). Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res 76, 2301–2313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hortobagyi, G.N., Stemmer, S.M., Burris, H.A., Yap, Y.S., Sonke, G.S., Paluch-Shimon, S., Campone, M., Blackwell, K.L., André, F., Winer, E. P., et al. (2016). Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375, 1738–1748.

    CAS  PubMed  Google Scholar 

  • Hu, Q., Ye, Y., Chan, L.C., Li, Y., Liang, K., Lin, A., Egranov, S.D., Zhang, Y., Xia, W., Gong, J., et al. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol 20, 835–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X.C., Zhang, J., Xu, B.H., Cai, L., Ragaz, J., Wang, Z.H., Wang, B.Y., Teng, Y.E., Tong, Z.S., Pan, Y.Y., et al. (2015). Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 16, 436–446.

    CAS  PubMed  Google Scholar 

  • Huang, Q., Zhang, Z., Zheng, Y., Zheng, Q., Chen, S., Xu, Y., Ou, Y., and Qiu, Z. (2012). Hypoxia-inducible factor and vascular endothelial growth factor pathway for the study of hypoxia in a new model of otitis media with effusion. Audiol Neurotol 17, 349–356.

    CAS  Google Scholar 

  • Huang, X., Motea, E.A., Moore, Z.R., Yao, J., Dong, Y., Chakrabarti, G., Kilgore, J.A., Silvers, M.A., Patidar, P.L., Cholka, A., et al. (2016). Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors. Cancer Cell 30, 940–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, Y.H., García-García, C., Serra, V., He, L., Torres-Lockhart, K., Prat, A., Anton, P., Cozar, P., Guzmán, M., Grueso, J., et al. (2012). PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2, 1036–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingold Heppner, B., Untch, M., Denkert, C., Pfitzner, B.M., Lederer, B., Schmitt, W., Eidtmann, H., Fasching, P.A., Tesch, H., Solbach, C., et al. (2016). Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res 22, 5747–5754.

    CAS  PubMed  Google Scholar 

  • Jhan, J.R., and Andrechek, E.R. (2017). Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics 18, 1595–1609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y.Z., Ma, D., Suo, C., Shi, J., Xue, M., Hu, X., Xiao, Y., Yu, K.D., Liu, Y.R., Yu, Y., et al. (2019). Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35, 428–440.e5.

    CAS  PubMed  Google Scholar 

  • Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S., Yang, S.R., Kurian, A., Van Valen, D., West, R., et al. (2018). A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, I.S., Gao, Y., Welte, T., Wang, H., Liu, J., Janghorban, M., Sheng, K., Niu, Y., Goldstein, A., Zhao, N., et al. (2019). Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol 21, 1113–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki-Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., and Ding, L. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70.

    CAS  Google Scholar 

  • Krieg, C., Nowicka, M., Guglietta, S., Schindler, S., Hartmann, F.J., Weber, L.M., Dummer, R., Robinson, M.D., Levesque, M.P., and Becher, B. (2018). High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 24, 144–153.

    CAS  PubMed  Google Scholar 

  • Kurtulus, S., Madi, A., Escobar, G., Klapholz, M., Nyman, J., Christian, E., Pawlak, M., Dionne, D., Xia, J., Rozenblatt-Rosen, O., et al. (2019). Checkpoint blockade immunotherapy induces dynamic changes in PD-1 −CD8+ tumor-infiltrating T cells. Immunity 50, 181–194.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, B.D., Bauer, J.A., Chen, X., Sanders, M.E., Chakravarthy, A.B., Shyr, Y., and Pietenpol, J.A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121, 2750–2767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, B.D., Jovanović, B., Chen, X., Estrada, M.V., Johnson, K.N., Shyr, Y., Moses, H.L., Sanders, M.E., and Pietenpol, J.A. (2016). Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11, e0157368.

    PubMed  PubMed Central  Google Scholar 

  • Li, C.W., Lim, S.O., Chung, E.M., Kim, Y.S., Park, A.H., Yao, J., Cha, J.H., Xia, W., Chan, L.C., Kim, T., et al. (2018a). Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33, 187–201.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Qiu, Y., Lu, W., Jiang, Y., and Wang, J. (2018b). Immunotherapeutic interventions of triple negative breast cancer. J Transl Med 16, 147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, H., Xiao, J., Zhou, Z., Wu, J., Ge, F., Li, Z., Zhang, H., Sun, J., Li, F., Liu, R., et al. (2018). Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene 37, 1961–1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liedtke, C., Mazouni, C., Hess, K.R., André, F., Tordai, A., Mejia, J.A., Symmans, W.F., Gonzalez-Angulo, A.M., Hennessy, B., Green, M., et al. (2008). Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26, 1275–1281.

    PubMed  Google Scholar 

  • Lin, C. Y., Siow, T. Y., Lin, M. H., Hsu, Y. H., Tung, Y. Y., Jang, T., Recht, L., and Chang, C. (2013). Visualization of rodent brain tumor angiogenesis and effects of antiangiogenic treatment using 3D ΔR2-µMRA. Angiogenesis 16, 785–793.

    CAS  PubMed  Google Scholar 

  • Lissy, N.A., Van Dyk, L.F., Becker-Hapak, M., Vocero-Akbani, A., Mendler, J.H., and Dowdy, S.F. (1998). TCR antigen-induced cell death occurs from a late G1 phase cell cycle check point. Immunity 8, 57–65.

    CAS  PubMed  Google Scholar 

  • Liu, P., Wang, Y., Li, Y.H., Yang, C., Zhou, Y.L., Li, B., Lu, S.H., Yang, R. C., Cai, Y.L., Tobelem, G., et al. (2003). Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leukemia Res 27, 701–708.

    CAS  Google Scholar 

  • Liu, Y.R., Jiang, Y.Z., Xu, X.E., Yu, K.D., Jin, X., Hu, X., Zuo, W.J., Hao, S., Wu, J., Liu, G.Y., et al. (2016). Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18, 33.

    PubMed  PubMed Central  Google Scholar 

  • Livasy, C.A., Karaca, G., Nanda, R., Tretiakova, M.S., Olopade, O.I., Moore, D.T., and Perou, C.M. (2006). Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19, 264–271.

    CAS  PubMed  Google Scholar 

  • Loi, S., Michiels, S., Salgado, R., Sirtaine, N., Jose, V., Fumagalli, D., Kellokumpu-Lehtinen, P.L., Bono, P., Kataja, V., Desmedt, C., et al. (2014). Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25, 1544–1550.

    CAS  PubMed  Google Scholar 

  • Loibl, S., Untch, M., Burchardi, N., Huober, J., Sinn, B.V., Blohmer, J.U., Grischke, E.M., Furlanetto, J., Tesch, H., Hanusch, C., et al. (2019). A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 30, 1279–1288.

    CAS  PubMed  Google Scholar 

  • Ma, J., Liu, C., Yang, D., Song, J., Zhang, J., Wang, T., Wang, M., Xu, W., Li, X., Ding, S., et al. (2019). C1orf106, an innate immunity activator, is amplified in breast cancer and is required for basal-like/luminal progenitor fate decision. Sci China Life Sci 62, 1229–1242.

    CAS  PubMed  Google Scholar 

  • Mackey, J.R., Pieńkowski, T., Crown, J., Sadeghi, S., Martin, M., Chan, A., Saleh, M., Sehdev, S., Provencher, L., Semiglazov, V., et al. (2016). Long-term outcomes after adjuvant treatment of sequential versus combination docetaxel with doxorubicin and cyclophosphamide in node-positive breast cancer: BCIRG-005 randomized trial. Ann Oncol 27, 1041–1047.

    CAS  PubMed  Google Scholar 

  • Manna, S., Bostner, J., Sun, Y., Miller, L.D., Alayev, A., Schwartz, N.S., Lager, E., Fornander, T., Nordenskjöld, B., Yu, J.J., et al. (2016). ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin Cancer Res 22, 1421–1431.

    CAS  PubMed  Google Scholar 

  • Marquard, A.M., Eklund, A.C., Joshi, T., Krzystanek, M., Favero, F., Wang, Z.C., Richardson, A.L., Silver, D.P., Szallasi, Z., and Birkbak, N. J. (2015). Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs. Biomark Res 3, 9.

    PubMed  PubMed Central  Google Scholar 

  • Marra, A., Viale, G., and Curigliano, G. (2019). Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 17, 90.

    PubMed  PubMed Central  Google Scholar 

  • Martin, P., Bartlett, N.L., Blum, K.A., Park, S., Maddocks, K., Ruan, J., Ridling, L.A., Dittus, C., Chen, Z., Huang, X., et al. (2019). A phase 1 trial of ibrutinib plus palbociclib in previously treated mantle cell lymphoma. Blood 133, 1201–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda, N., Lee, S.J., Ohtani, S., Im, Y.H., Lee, E.S., Yokota, I., Kuroi, K., Im, S.A., Park, B.W., Kim, S.B., et al. (2017). Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376, 2147–2159.

    CAS  PubMed  Google Scholar 

  • Matsumoto, H., Koo, S., Dent, R., Tan, P.H., and Iqbal, J. (2015). Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol 68, 506–510.

    CAS  PubMed  Google Scholar 

  • Mendes-Pereira, A.M., Martin, S.A., Brough, R., McCarthy, A., Taylor, J. R., Kim, J.S., Waldman, T., Lord, C.J., and Ashworth, A. (2009). Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1, 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger-Filho, O., Tutt, A., de Azambuja, E., Saini, K.S., Viale, G., Loi, S., Bradbury, I., Bliss, J.M., Azim Jr, H.A., Ellis, P., et al. (2012). Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30, 1879–1887.

    CAS  PubMed  Google Scholar 

  • Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E.A., Shenkier, T., Cella, D., and Davidson, N.E. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357, 2666–2676.

    CAS  PubMed  Google Scholar 

  • Motz, G.T., and Coukos, G. (2011). The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11, 702–711.

    CAS  PubMed  Google Scholar 

  • Muvarak, N.E., Chowdhury, K., Xia, L., Robert, C., Choi, E.Y., Cai, Y., Bellani, M., Zou, Y., Singh, Z.N., Duong, V.H., et al. (2016). Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents—a potential therapy for cancer. Cancer Cell 30, 637–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, J.A., and Dvorak, H.F. (2012). Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis 29, 657–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda, R., Chow, L.Q.M., Dees, E.C., Berger, R., Gupta, S., Geva, R., Pusztai, L., Pathiraja, K., Aktan, G., Cheng, J.D., et al. (2016). Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol 34, 2460–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., and Alizadeh, A.A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12, 453–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, Y., Schmidt, K.R., Werner, B.A., Koenig, J.K., Guldner, I.H., Schnepp, P.M., Tan, X., Jiang, L., Host, M., Sun, L., et al. (2019). Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat Commun 10, 2860.

    PubMed  PubMed Central  Google Scholar 

  • Nielsen, T.O., Hsu, F.D., Jensen, K., Cheang, M., Karaca, G., Hu, Z., Hernandez-Boussard, T., Livasy, C., Cowan, D., Dressler, L., et al. (2004). Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10, 5367–5374.

    CAS  PubMed  Google Scholar 

  • Nolan, E., Savas, P., Policheni, A.N., Darcy, P.K., Vaillant, F., Mintoff, C.P., Dushyanthen, S., Mansour, M., Pang, J.M.B., Fox, S.B., et al. (2017). Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med 9, eaal4922.

    PubMed  PubMed Central  Google Scholar 

  • Park, J.H., Jonas, S.F., Bataillon, G., Criscitiello, C., Salgado, R., Loi, S., Viale, G., Lee, H.J., Dieci, M.V., Kim, S.B., et al. (2019). Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann Oncol 30, 1941–1949.

    CAS  PubMed  Google Scholar 

  • Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C.F., et al. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96, 9212–9217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C. A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000). Molecular portraits of human breast tumours. Nature 406, 747–752.

    CAS  PubMed  Google Scholar 

  • Poggio, F., Bruzzone, M., Ceppi, M., Pondé, N.F., La Valle, G., Del Mastro, L., de Azambuja, E., and Lambertini, M. (2018). Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol 29, 1497–1508.

    CAS  PubMed  Google Scholar 

  • Postow, M.A., Sidlow, R., and Hellmann, M.D. (2018). Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378, 158–168.

    CAS  PubMed  Google Scholar 

  • Rakha, E.A., El-Sayed, M.E., Green, A.R., Paish, E.C., Lee, A.H.S., and Ellis, I.O. (2007). Breast carcinoma with basal differentiation: a proposal for pathology definition based on basal cytokeratin expression. Histopathology 50, 434–438.

    CAS  PubMed  Google Scholar 

  • Rao, S.S., Stoehr, J., Dokic, D., Wan, L., Decker, J.T., Konopka, K., Thomas, A.L., Wu, J., Kaklamani, V.G., Shea, L.D., et al. (2017). Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget 8, 83925–83939.

    PubMed  PubMed Central  Google Scholar 

  • Robert, N.J., Diéras, V., Glaspy, J., Brufsky, A.M., Bondarenko, I., Lipatov, O.N., Perez, E.A., Yardley, D.A., Chan, S.Y.T., Zhou, X., et al. (2011). RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29, 1252–1260.

    CAS  PubMed  Google Scholar 

  • Rocca, A., Melegari, E., and Palleschi, M. (2019). Ribociclib and endocrine therapy in breast cancer. N Engl J Med 381, 1592.

    PubMed  Google Scholar 

  • Rugo, H.S., Olopade, O.I., DeMichele, A., Yau, C., van’ t Veer, L.J., Buxton, M.B., Hogarth, M., Hylton, N.M., Paoloni, M., Perlmutter, J., et al. (2016). Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med 375, 23–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., Wienert, S., Van den Eynden, G., Baehner, F.L., Penault-Llorca, F., et al. (2015). The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26, 259–271.

    CAS  PubMed  Google Scholar 

  • Samanta, D., Park, Y., Ni, X., Li, H., Zahnow, C.A., Gabrielson, E., Pan, F., and Semenza, G.L. (2018). Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA 115, E1239–E1248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmamed, M.F., and Chen, L. (2018). A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanna, G., Fabi, A., Crivellari, D., Saracchini, S., Battelli, N., Nistico, C., Capobianco, A.M., Zampa, G., Bottini, A., Del Prete, S., et al. (2014). Safety and efficacy of bevacizumab in combination with first-line chemotherapy in advanced breast cancer: data from the Italian cohort of the ATHENA trial. Tumori 100, 432–438.

    PubMed  Google Scholar 

  • Scaltriti, M., Eichhorn, P.J., Cortés, J., Prudkin, L., Aura, C., Jiménez, J., Chandarlapaty, S., Serra, V., Prat, A., Ibrahim, Y.H., et al. (2011). Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci USA 108, 3761–3766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, P., Adams, S., Rugo, H.S., Schneeweiss, A., Barrios, C.H., Iwata, H., Diéras, V., Hegg, R., Im, S.A., Shaw Wright, G., et al. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379, 2108–2121.

    CAS  PubMed  Google Scholar 

  • Siegel, R.L., Miller, K.D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J Clin 69, 7–34.

    PubMed  Google Scholar 

  • Sikov, W.M., Berry, D.A., Perou, C.M., Singh, B., Cirrincione, C.T., Tolaney, S.M., Kuzma, C.S., Pluard, T.J., Somlo, G., Port, E.R., et al. (2015). Cancer statistics, 2019. J Clin Oncol 33, 13–21.

    CAS  PubMed  Google Scholar 

  • Smith, I.E., Pierga, J.Y., Biganzoli, L., Cortés-Funes, H., Thomssen, C., Pivot, X., Fabi, A., Xu, B., Stroyakovskiy, D., Franke, F.A., et al. (2011). First-line bevacizumab plus taxane-based chemotherapy for locally recurrent or metastatic breast cancer: safety and efficacy in an open-label study in 2251 patients. Ann Oncol 22, 595–602.

    CAS  PubMed  Google Scholar 

  • Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98, 10869–10874.

    PubMed  PubMed Central  Google Scholar 

  • Spencer, S.L., Cappell, S.D., Tsai, F.C., Overton, K.W., Wang, C.L., and Meyer, T. (2013). The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, A.R., Wright, G.S., Thummala, A.R., Danso, M.A., Popovic, L., Pluard, T.J., Han, H.S., Vojnović, Ž., Vasev, N., Ma, L., et al. (2019). Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol 20, 1587–1601.

    CAS  PubMed  Google Scholar 

  • Taylor, J.W., Parikh, M., Phillips, J.J., James, C.D., Molinaro, A.M., Butowski, N.A., Clarke, J.L., Oberheim-Bush, N.A., Chang, S.M., Berger, M.S., et al. (2018). Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol 140, 477–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teo, Z.L., Versaci, S., Dushyanthen, S., Caramia, F., Savas, P., Mintoff, C. P., Zethoven, M., Virassamy, B., Luen, S.J., McArthur, G.A., et al. (2017). Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res 77, 6340–6352.

    CAS  PubMed  Google Scholar 

  • Thomssen, C., Pierga, J.Y., Pritchard, K.I., Biganzoli, L., Cortes-Funes, H., Petráková, K., Kaufman, B., Duenne, A., and Smith, I. (2012). First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology 82, 218–227.

    CAS  PubMed  Google Scholar 

  • Turner, N.C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., Harbeck, N., Loibl, S., Huang Bartlett, C., Zhang, K., et al. (2015). Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373, 209–219.

    CAS  PubMed  Google Scholar 

  • Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010). Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244.

    CAS  PubMed  Google Scholar 

  • Tutt, A., Tovey, H., Cheang, M.C.U., Kernaghan, S., Kilburn, L., Gazinska, P., Owen, J., Abraham, J., Barrett, S., Barrett-Lee, P., et al. (2018). Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 24, 628–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagia, E., Mahalingam, D., and Cristofanilli, M. (2020). The landscape of targeted therapies in TNBC. Cancers 12, 916.

    CAS  PubMed Central  Google Scholar 

  • van Eekelen, M., Sasportas, L.S., Kasmieh, R., Yip, S., Figueiredo, J.L., Louis, D.N., Weissleder, R., and Shah, K. (2010). Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29, 3185–3195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkitaraman, R. (2010). Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features. Exp Rev Anticancer Ther 10, 199–207.

    CAS  Google Scholar 

  • von Minckwitz, G., Eidtmann, H., Rezai, M., Fasching, P.A., Tesch, H., Eggemann, H., Schrader, I., Kittel, K., Hanusch, C., Kreienberg, R., et al. (2012a). Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366, 299–309.

    CAS  PubMed  Google Scholar 

  • von Minckwitz, G., Loibl, S., Untch, M., Eidtmann, H., Rezai, M., Fasching, P.A., Tesch, H., Eggemann, H., Schrader, I., Kittel, K., et al. (2014a). Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto). Ann Oncol 25, 2363–2372.

    CAS  PubMed  Google Scholar 

  • von Minckwitz, G., Schneeweiss, A., Loibl, S., Salat, C., Denkert, C., Rezai, M., Blohmer, J.U., Jackisch, C., Paepke, S., Gerber, B., et al. (2014b). Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15, 747–756.

    CAS  PubMed  Google Scholar 

  • von Minckwitz, G., Untch, M., Blohmer, J.U., Costa, S.D., Eidtmann, H., Fasching, P.A., Gerber, B., Eiermann, W., Hilfrich, J., Huober, J., et al. (2012b). Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30, 1796–1804.

    PubMed  Google Scholar 

  • Voorwerk, L., Slagter, M., Horlings, H.M., Sikorska, K., van de Vijver, K. K., de Maaker, M., Nederlof, I., Kluin, R.J.C., Warren, S., Ong, S.F., et al. (2019). Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med 25, 920–928.

    CAS  PubMed  Google Scholar 

  • Vriens, B.E.P.J., Vriens, I.J.H., Aarts, M.J.B., van Gastel, S.M., van den Berkmortel, F.W.P.J., Smilde, T.J., van Warmerdam, L.J.C., van Spronsen, D.J., Peer, P.G.M., de Boer, M., et al. (2017). Improved survival for sequentially as opposed to concurrently delivered neoadjuvant chemotherapy in non-metastatic breast cancer. Breast Cancer Res Treat 165, 593–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Sun, J., Liu, L.N., Flies, D.B., Nie, X., Toki, M., Zhang, J., Song, C., Zarr, M., Zhou, X., et al. (2019a). Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25, 656–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Wang, J., Wang, X., Liu, L., Hu, J., Yu, X., Xu, Y., Niu, X., Lin, Z., Zhang, Y., et al. (2016). Molecular mechanism of inhibition of the abnormal proliferation of human umbilical vein endothelial cells by hydroxysafflor-yellow A. Pharm Biol 54, 1800–1807.

    CAS  PubMed  Google Scholar 

  • Wang, R.X., Chen, S., Huang, L., Zhou, Y., and Shao, Z.M. (2019b). Monitoring serum VEGF in neoadjuvant chemotherapy for patients with triple-negative breast cancer: a new strategy for early prediction of treatment response and patient survival. Oncologist 24, 753–761.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H., et al. (2014a). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Yu, Q., He, X., Romigh, T., Altemus, J., and Eng, C. (2014b). Activation of AR sensitizes breast carcinomas to NVP-BEZ235’s therapeutic effect mediated by PTEN and KLLN upregulation. Mol Cancer Therapeutics 13, 517–527.

    CAS  Google Scholar 

  • Weng, Y.S., Tseng, H.Y., Chen, Y.A., Shen, P.C., Al Haq, A.T., Chen, L.M., Tung, Y.C., and Hsu, H.L. (2019). MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 18, 42.

    PubMed  PubMed Central  Google Scholar 

  • Wu, F.T.H., Xu, P., Chow, A., Man, S., Krüger, J., Khan, K.A., Paez-Ribes, M., Pham, E., and Kerbel, R.S. (2019). Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer 120, 196–206.

    CAS  PubMed  Google Scholar 

  • Wu, S.T., Sun, G.H., Cha, T.L., Kao, C.C., Chang, S.Y., Kuo, S.C., and Way, T.D. (2016). CSC-3436 switched tamoxifen-induced autophagy to apoptosis through the inhibition of AMPK/mTOR pathway. J Biomed Sci 23, 60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, J., Wu, B., Zhou, Z., Hu, S., Piao, Y., Zhou, Q., Wang, G., Tang, J., Liu, X., and Shen, Y. (2018). Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Sci China Life Sci 61, 436–447.

    CAS  PubMed  Google Scholar 

  • Xiao, Y., Ma, D., Zhao, S., Suo, C., Shi, J., Xue, M.Z., Ruan, M., Wang, H., Zhao, J., Li, Q., et al. (2019). Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res 25, 5002–5014.

    CAS  PubMed  Google Scholar 

  • Xu, G., Chapman, J.R., Brandsma, I., Yuan, J., Mistrik, M., Bouwman, P., Bartkova, J., Gogola, E., Warmerdam, D., Barazas, M., et al. (2015). REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yunokawa, M., Koizumi, F., Kitamura, Y., Katanasaka, Y., Okamoto, N., Kodaira, M., Yonemori, K., Shimizu, C., Ando, M., Masutomi, K., et al. (2012). Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci 103, 1665–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N.T., Tan, Y., Ci, Y., Wu, F., Dai, X., et al. (2018a). Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Lin, Y., Sun, X.J., Wang, B.Y., Wang, Z.H., Luo, J.F., Wang, L.P., Zhang, S., Cao, J., Tao, Z.H., et al. (2018b). Biomarker assessment of the CBCSG006 trial: a randomized phase III trial of cisplatin plus gemcitabine compared with paclitaxel plus gemcitabine as first-line therapy for patients with metastatic triple-negative breast cancer. Ann Oncol 29, 1741–1747.

    CAS  PubMed  Google Scholar 

  • Zhou, Q., Yin, W., Du, Y., and Lu, J. (2014). For or against adjuvant trastuzumab for pT1a-bN0M0 breast cancer patients with HER2-positive tumors: a meta-analysis of published literatures. PLoS ONE 9, e83646.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81922048, 81874112, 81874113, 81572583, and 81502278), the Fok Ying-Tong Education Foundation for College Young Teachers (171034), the Training Plan of Excellent Talents in Shanghai Municipality Health System (2017YQ038), the “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (17CG01), Shanghai Pujiang Program (18PJD007), and the Training Plan of Excellent Talents of Fudan University Shanghai Cancer Center (YJYQ201602). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zhou Jiang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SY., Wang, H., Shao, ZM. et al. Triple-negative breast cancer: new treatment strategies in the era of precision medicine. Sci. China Life Sci. 64, 372–388 (2021). https://doi.org/10.1007/s11427-020-1714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1714-8

Keywords

Navigation