Skip to main content
Log in

Brain interstitial fluid drainage and extracellular space affected by inhalational isoflurane: in comparison with intravenous sedative dexmedetomidine and pentobarbital sodium

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Brain interstitial fluid drainage and extracellular space are closely related to waste clearance from the brain. Different anesthetics may cause different changes of brain interstitial fluid drainage and extracellular space but these still remain unknown. Herein, effects of the inhalational isoflurane, intravenous sedative dexmedetomidine and pentobarbital sodium on deep brain matters’ interstitial fluid drainage and extracellular space and underlying mechanisms were investigated. When compared to intravenous anesthetic dexmedetomidine or pentobarbital sodium, inhalational isoflurane induced a restricted diffusion of extracellular space, a decreased extracellular space volume fraction, and an increased norepinephrine level in the caudate nucleus or thalamus with the slowdown of brain interstitial fluid drainage. A local administration of norepinephrine receptor antagonists, propranolol, atipamezole and prazosin into extracellular space increased diffusion of extracellular space and interstitial fluid drainage whilst norepinephrine decreased diffusion of extracellular space and interstitial fluid drainage. These findings suggested that restricted diffusion in brain extracellular space can cause slowdown of interstitial fluid drainage, which may contribute to the neurotoxicity following the waste accumulation in extracellular space under inhaled anesthesia per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akeju, O., Loggia, M.L., Catana, C., Pavone, K.J., Vazquez, R., Rhee, J., Contreras Ramirez, V., Chonde, D.B., Izquierdo-Garcia, D., Arabasz, G., et al. (2014). Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 3, e04499.

    PubMed  PubMed Central  Google Scholar 

  • Anzawa, N., Kushikata, T., Ohkawa, H., Yoshida, H., Kubota, T., and Matsuki, A. (2001). Increased noradrenaline release from rat preoptic area during and after sevoflurane and isoflurane anesthesia. Can J Anesth 48, 462–465.

    CAS  PubMed  Google Scholar 

  • Aston-Jones, G., and Cohen, J.D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450.

    CAS  PubMed  Google Scholar 

  • Bagcik, E., Ozkardesler, S., Boztas, N., Ugur Ergur, B., Akan, M., Guneli, M., and Ozbilgin, S. (2014). Effects of dexmedetomidine in conjunction with remote ischemic preconditioning on renal ischemia-reperfusion injury in rats. Braz J Anesthesiol 64, 382–390.

    Google Scholar 

  • Benveniste, H., Lee, H., Ding, F., Sun, Q., Al-Bizri, E., Makaryus, R., Probst, S., Nedergaard, M., Stein, E.A., and Lu, H. (2017). Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 127, 976–988.

    CAS  PubMed  Google Scholar 

  • Brown, R.E., Basheer, R., McKenna, J.T., Strecker, R.E., and McCarley, R. W. (2012). Control of sleep and wakefulness. Physiol Rev 92, 1087–1187.

    CAS  PubMed  Google Scholar 

  • Demiral, Ş.B.ı., Tomasi, D., Sarlls, J., Lee, H., Wiers, C.E., Zehra, A., Srivastava, T., Ke, K., Shokri-Kojori, E., Freeman, C.R., et al. (2019). Apparent diffusion coefficient changes in human brain during sleep — Does it inform on the existence of a glymphatic system? Neuroimage 185, 263–273.

    PubMed  Google Scholar 

  • Eckenhoff, R.G., Johansson, J.S., Wei, H., Carnini, A., Kang, B., Wei, W., Pidikiti, R., Keller, J.M., and Eckenhoff, M.F. (2004). Inhaled anesthetic enhancement of amyloid-β oligomerization and cytotoxicity. Anesthesiology 101, 703–709.

    CAS  PubMed  Google Scholar 

  • Franks, N.P. (2006). Molecular targets underlying general anaesthesia. Br J Pharmacol 147, S72–S81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi, M., and Mehranfard, N. (2018). Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 137, 297–308.

    CAS  PubMed  Google Scholar 

  • Guan, X., Wang, W., Wang, A., Teng, Z., and Han, H. (2018). Brain interstitial fluid drainage alterations in glioma-bearing rats. Aging Dis 9, 228–234.

    Google Scholar 

  • Hablitz, L.M., Vinitsky, H.S., Sun, Q., Stæger, F.F., Sigurdsson, B., Mortensen, K.N., Lilius, T.O., and Nedergaard, M. (2019). Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 5, eaav5447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han, H.B., Li, K., Yan, J.H., Zhu, K., and Fu, Y. (2012). An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. Sci China Life Sci 55, 782–787.

    PubMed  Google Scholar 

  • Han, H., Shi, C., Fu, Y., Zuo, L., Lee, K., He, Q., and Han, H. (2014). A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain (December 2013). IEEE J Biomed Health Inform 18, 978–983.

    PubMed  Google Scholar 

  • Hannocks, M.J., Pizzo, M.E., Huppert, J., Deshpande, T., Abbott, N.J., Thorne, R.G., and Sorokin, L. (2018). Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab 38, 669–686.

    CAS  PubMed  Google Scholar 

  • Hemmings Jr, H.C., Akabas, M.H., Goldstein, P.A., Trudell, J.R., Orser, B. A., and Harrison, N.L. (2005). Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26, 503–510.

    CAS  PubMed  Google Scholar 

  • Herculano-Houzel, S. (2013). Sleep it out. Science 342, 316–317.

    CAS  PubMed  Google Scholar 

  • Hirota, K., and Kushikata, T. (2001). Editorial I: Central noradrenergic neurones and the mechanism of general anaesthesia. Br J Anaesth 87, 811–813.

    CAS  PubMed  Google Scholar 

  • Hladky, S.B., and Barrand, M.A. (2014). Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11, 26.

    PubMed  PubMed Central  Google Scholar 

  • Huang, R., Wang, Y., Li, J., Jiang, X., Li, Y., Liu, B., Wu, X., Du, X., Hang, Y., Jin, M., et al. (2019). Ca2+-independent but voltage-dependent quantal catecholamine secretion (CiVDS) in the mammalian sympathetic nervous system. Proc Natl Acad Sci USA 116, 20201–20209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorm, C.M., and Stamford, J.A. (1993). Actions of the hypnotic anaesthetic, dexmedetomidine, on noradrenaline release and cell firing in rat locus coeruleus slices. Br J Anaesth 71, 447–449.

    CAS  PubMed  Google Scholar 

  • Kiviniemi, V., Wang, X., Korhonen, V., Keinänen, T., Tuovinen, T., Autio, J., LeVan, P., Keilholz, S., Zang, Y.F., Hennig, J., et al. (2016). Ultra-fast magnetic resonance encephalography of physiological brain activity — Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36, 1033–1045.

    CAS  PubMed  Google Scholar 

  • Klaes, C., Shi, Y., Kellis, S., Minxha, J., Revechkis, B., and Andersen, R.A. (2014). A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J Neural Eng 11, 056024.

    PubMed  PubMed Central  Google Scholar 

  • Kunwar, S., Chang, S., Westphal, M., Vogelbaum, M., Sampson, J., Barnett, G., Shaffrey, M., Ram, Z., Piepmeier, J., Prados, M., et al. (2010). Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12, 871–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushikata, T., Hirota, K., Kotani, N., Yoshida, H., Kudo, M., and Matsuki, A. (2005). Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: Relevance to thermoregulation during anesthesia. Neuroscience 131, 79–86.

    CAS  PubMed  Google Scholar 

  • Lei, Y., Han, H., Yuan, F., Javeed, A., and Zhao, Y. (2017). The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 157, 230–246.

    PubMed  Google Scholar 

  • Liu, S., Lamaze, A., Liu, Q., Tabuchi, M., Yang, Y., Fowler, M., Bharadwaj, R., Zhang, J., Bedont, J., Blackshaw, S., et al. (2014). Wide awake mediates the circadian timing of sleep onset. Neuron 82, 151–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Liu, Q., Tabuchi, M., and Wu, M.N. (2016). Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell 165, 1347–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Rouhani, S.J., Peske, J. D., Derecki, N.C., Castle, D., Mandell, J.W., Lee, K.S., et al. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno, T., Ito, E., and Kimura, F. (1994). Pentobarbital sodium inhibits the release of noradrenaline in the medial preoptic area in the rat. NeuroSci Lett 170, 111–113.

    CAS  PubMed  Google Scholar 

  • Paxinos, G., and Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates, Sixth ed. (Burlington: Elsevier Inc.).

    Google Scholar 

  • Plog, B.A., and Nedergaard, M. (2018). The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol Mech Dis 13, 379–394.

    CAS  Google Scholar 

  • Purdon, P.L., Sampson, A., Pavone, K.J., and Brown, E.N. (2015). Clinical electroencephalography for anesthesiologists. Anesthesiology 123, 937–960.

    CAS  PubMed  Google Scholar 

  • Rashkin, M.C., Youngs, C., and Penovich, P. (1987). Pentobarbital treatment of refractory status epilepticus. Neurology 37, 500–503.

    CAS  PubMed  Google Scholar 

  • Saper, C.B., Scammell, T.E., and Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263.

    CAS  PubMed  Google Scholar 

  • Schwarz, L.A., and Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. Curr Biol 25, R1051–R1056.

    CAS  PubMed  Google Scholar 

  • Sherpa, A.D., Xiao, F., Joseph, N., Aoki, C., and Hrabetova, S. (2016). Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 70, 307–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, C., Lei, Y., Han, H., Zuo, L., Yan, J., He, Q., Yuan, L., Liu, H., Xu, G., and Xu, W. (2016). Transportation in the interstitial space of the brain can be regulated by neuronal excitation. Sci Rep 5, 17673.

    Google Scholar 

  • Smith, A.J., and Verkman, A.S. (2018). The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J 32, 543–551.

    CAS  PubMed  Google Scholar 

  • Souweidane, M.M., Kramer, K., Pandit-Taskar, N., Zhou, Z., Haque, S., Zanzonico, P., Carrasquillo, J.A., Lyashchenko, S.K., Thakur, S.B., Donzelli, M., et al. (2018). Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol 19, 1040–1050.

    PubMed  PubMed Central  Google Scholar 

  • Su, X., Meng, Z.T., Wu, X.H., Cui, F., Li, H.L., Wang, D.X., Zhu, X., Zhu, S.N., Maze, M., and Ma, D. (2016). Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388, 1893–1902.

    CAS  PubMed  Google Scholar 

  • Teng, Z., Wang, A., Wang, P., Wang, R., Wang, W., and Han, H. (2018). The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain. Aging Dis 9, 808–816.

    PubMed  PubMed Central  Google Scholar 

  • Van Schoors, J., Lens, C., Maes, K., Michotte, Y., Smolders, I., and Van Eeckhaut, A. (2015). Reassessment of the antioxidative mixture for the challenging electrochemical determination of dopamine, noradrenaline and serotonin in microdialysis samples. J Chromatogr B 998–999, 63–71.

    Google Scholar 

  • Vardjan, N., Kreft, M., and Zorec, R. (2014). Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia 62, 566–579.

    PubMed  Google Scholar 

  • Veasey, S.C., Valladares, O., Fenik, P., Kapfhamer, D., Sanford, L., Benington, J., and Bucan, M. (2000). An automated system for recording and analysis of sleep in mice. Sleep 23, 1025–1040.

    CAS  PubMed  Google Scholar 

  • Wang, A., Wang, R., Cui, D., Huang, X., Yuan, L., Liu, H., Fu, Y., Liang, L., Wang, W., He, Q., et al. (2019). The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination. Aging Dis 10, 937–948.

    PubMed  PubMed Central  Google Scholar 

  • Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 373–377.

    CAS  PubMed  Google Scholar 

  • Xu, F., Han, H., Zhang, H., Pi, J., and Fu, Y. (2011). Quantification of Gd-DTPA concentration in neuroimaging using T1 3D MP-RAGE sequence at 3.0 T. Magn Reson Imag 29, 827–834.

    Google Scholar 

  • Yoshida, H., Kushikata, T., Tose, R., Kudo, M., Kudo, T., and Hirota, K. (2010). Nitrous oxide and xenon increase noradrenaline release in the cerebral cortex in vivo and in vitro. Neurosci Lett 469, 199–203.

    CAS  PubMed  Google Scholar 

  • Yue, X., Mei, Y., Zhang, Y., Tong, Z., Cui, D., Yang, J., Wang, A., Wang, R., Fei, X., Ai, L., et al. (2019). New insight into Alzheimer’s disease: Light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. Alzheimers Dement Transl Res Clin Interv 5, 671–684.

    Google Scholar 

  • Zhang, Y., Li, L., Li, T., Xin, Y., Liu, J., Ma, F., and Mao, L. (2018a). In vivo measurement of the dynamics of norepinephrine in an olfactory bulb following ischemia-induced olfactory dysfunction and its responses to dexamethasone treatment. Analyst 143, 5247–5254.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Shan, G.J., Zhang, Y.X., Cao, S.J., Zhu, S.N., Li, H.J., Ma, D., and Wang, D.X. (2018b). Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br J Anaesth 121, 595–604.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Major Scientific Research Instrument Development Project (61827808), the National Key Basic Research Program (973 Program, 2015CB856402), Beijing Brain Initiative of Beijing Municipal Science & Technology Commission (Z181100001518004), National Natural Science Foundation of China (81872051), and Peking University Clinical Scientist Program (BMU2019LCKXJ007). The authors also want to thank Prof. Jun Wang from the Department of Anesthesiology, Peking University Third Hospital and Prof. Zhiqian Tong from Beijing Institute for Brain Disorders, Capital Medical University as scientific advisors. We also thank Prof. Lan Yuan from the Peking University Health Science Center for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbin Han or Jun Yang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Han, H., Yang, J. et al. Brain interstitial fluid drainage and extracellular space affected by inhalational isoflurane: in comparison with intravenous sedative dexmedetomidine and pentobarbital sodium. Sci. China Life Sci. 63, 1363–1379 (2020). https://doi.org/10.1007/s11427-019-1633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1633-3

Keywords

Navigation