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Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic 
variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 en-
donuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The fre-
quency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochroma-
tin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are as-
sociated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays 
connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. 
Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic 
variation within populations and evolution of plant genomes. 
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Meiosis is thought to have evolved in an ancestor of eukary- 
otes and has been maintained in the majority of plant, fun-
gal and animal lineages [13]. During meiosis a single 
round of DNA replication is followed by two rounds of 
chromosome segregation, which generates recombined 
haploid gametes that can participate in fertilization [1]. 
Meiosis is also distinguished from mitosis as during the first 
division homologous chromosomes become physically 
paired and undergo recombination, including reciprocal 
genetic exchange termed crossover [1]. The combination of 
crossovers, independent chromosome segregation and game- 
te fusion mean that sexual reproduction generates increased 
genetic diversity between individuals, relative to asexual 
reproduction [4]. The precise advantage that sexual repro-
duction confers is debated, though its advantages must be 
strong and general as it is maintained in unicellular and 
multicellular species of variable population sizes and ecolo-

gies [4,5]. It is also important to understand meiotic recom-
bination in the context of agricultural breeding, where ho-
mologous recombination can be restricted to specific chro-
mosomal regions and thereby limit use of crop genetic var-
iability [6]. 

1  Meiotic recombination between homologous 
chromosomes 

Meiotic recombination is initiated by programmed DNA 
double-strand breaks (DSBs), catalyzed by the conserved 
topoisomerase-like transesterase SPO11 [7,8]. SPO11 be-
comes covalently bound to DNA via a phosphodiester bond 
between the DSB 5′-end and a catalytic tyrosine residue 
[9,10]. Following DSB formation the DNA is nicked in an 
adjacent region by Mre11/Sae2 and DSB 5′-ends are further 
resected by the 5′–3′ and 3′–5′ exonuclease activities of 
Exo1 and Mre11 respectively, yielding 3′-tails of single  
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stranded DNA (ssDNA) ~12 kb in length [10,11]. Meiotic 
ssDNA is bound by the RecA-related Rad51 and Dmc1 re-
combinases, which direct homology search, invasion of the 
ssDNA 3′-end and base-pairing with the homologous chro-
mosome [12,13]. Formation of a heteroduplex DNA mole-
cule displaces the non-complementary strand of the homo-
logue forming a displacement loop (D-loop). In budding 
yeast, plants and mice formation of DSBs by Spo11 and 
recombination are necessary for pairing of chromosomes [1]. 
For example, Arabidopsis spo11-1 mutants show 10 univa-
lents at metaphase-I instead of five paired bivalents and 
both spo11-1 and dmc1 mutants fail to synapse [14,15]. 
Following strand invasion the heteroduplex intermediate 
can enter different DNA repair pathways [16]. D-loops are 
relatively unstable molecules and can be dissociated after 
short extension of the ssDNA 3′-end by DNA synthesis, 
re-associate with the parental duplex and are repaired via 
synthesis-dependent strand annealing (SDSA) to form a 
non-crossover [17]. Alternatively, D-loops can be stabilized 
and ssDNA 3′-ends elongated further by DNA synthesis 
using the complementary strand of the homologous chro-
mosome as a template. Finally, second-end capture results 
in the formation of a double Holliday junction (dHj), which 
can be resolved to form a non-crossover or a crossover 
[17,18] (Figure 1). In plants and mammals, such as mice, a 
greater number of meiotic DSBs form than mature into 
crossovers. In Arabidopsis it is estimated that ~200 DSBs 
are generated per nucleus, with only ~10 maturing into 
crossovers [1922] (Figure 1). The remaining DSBs are 
thought to be repaired as non-crossovers or via inter-sister  

 

 

Figure 1  Genetic model for control of meiotic recombination in Ara-
bidopsis. The branching diagram represents a genetic model for control of 
meiotic recombination in Arabidopsis. Approximately 200 DNA double 
strand breaks (DSBs) are formed per meiosis, with an unknown number of 
DSBs repaired via intersister recombination. The remaining DSBs then 
mature into interhomolog strand invasion events. The majority of strand 
invasion events are repaired as non-crossovers (NCOs) via FANCM. The 
‘ZMM’ pathway forms crossovers via double Holliday junctions (dHjs) 
that are subject to interference. A minority of crossovers are generated via 
a non-interfering pathway (NIR). The estimated number of recombination 
events shown in parentheses are based on published observations 
[20,21,45,60,139142]. 

repair (Figure 1).  
In plants the majority of crossovers are formed via the 

interfering pathway, also known as the ZMM pathway [23] 
(Figure 1). Crossover interference is defined by the obser-
vation that crossovers are often more widely distributed 
than expected at random [2426]. A large number of pro-
teins function in the ZMM pathway, which in Arabidopsis 
includes MSH4, MSH5, SHOC1, ZIP4, PTD, MER3, ZYP1 
and HEI10 [19,2635]. Between 80%90% of Arabidopsis 
crossovers are interfering and the remainder of crossovers 
are generated via a non-interfering pathway, which includes 
MUS81 [30,33,36,37] (Figure 1). It is likely that these repair 
pathways are tightly coordinated and the FANCM helicase 
is known to play a key role in governing the balance be-
tween non-crossovers and non-interfering crossovers 
[38,39]. The net effect of these repair pathways is that most 
homologues have at least one crossover and that multiple 
crossovers are rare. As a larger number of DSBs are genera- 
ted than eventually form crossovers, this also means cross-
over locations are different between meioses.  

2  Plant crossover hotspots at gene promoters 
and terminators 

The frequency of meiotic recombination is highly variable  
along and between chromosomes, and in many species 
crossover hotspots and coldspots have been defined [40] 
(Figure 2). Eukaryotes possess extensive modification of 
DNA and histones, for example, cytosine methylation and 
histone methylation, acetylation, ubiquitination and phos-
phorylation, and these marks are important for gene expre- 
ssion and chromosome function [41,42]. Many of these 
modifications, for example, DNA methylation, are also epi- 
genetically inherited through DNA replication [41,42]. In-
creasing evidence has shown that recombination frequency 
in plants is strongly influenced by chromatin and epigenetic 
information [4348].  

Plant genomes show strong correlations between gene 
density and crossover frequency, which is particularly evi-
dent in species with large genomes, where gene densities 
are skewed. For example, maize (2.5 Gb), barley (5.1 Gb), 
wheat (17 Gb) and tomato (950 Mb) all show pronounced 
elevations in crossover frequency and gene density towards 
the sub-telomeres, with large central regions of high repeat 
density and suppressed crossovers [6,4953]. Fine-scale (kb) 
genetic mapping in maize has also demonstrated that cross-
overs are associated with genes and repressed in transpo- 
sons [5459]. Analysis of historical and experimental cross- 
overs in Arabidopsis has shown that recombination is asso-
ciated with gene promoter and terminator sites [4345,60] 
(Figure 3). Historical recombination analysis in Mimulus 
also showed crossover enrichment at gene transcriptional 
start sites (TSSs) and termination sites (TTSs) [61]. The  
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Figure 2  Epigenetic domains and the Arabidopsis recombination land-
scape. Plots are shown for Arabidopsis thaliana chromosome 3 with gene 
versus transposon density, H2A.Z [65] versus DNA methylation [91], or 
historical Eurasian crossover frequency (cM/Mb) [44] versus DNA meth-
ylation. Recombination is observed predominantly in the gene-rich, 
H2A.Z-dense chromosome arms and excluded from the transposon-rich, 
DNA methylation dense centromeric regions. 

chromatin architecture of gene promoters and terminators is 
important for accurate and productive RNA pol-II transcrip-
tion [62]. For example, immediately upstream of TSSs are 
nucleosome free regions with low DNA methylation, where 
Pol-II binds and initiates transcription [63]. The first (+1) 
nucleosome downstream of TSS is highly positioned, con- 

tains the histone variant H2A.Z and is modified with H3K4 
trimethylation (H3K4me3) and these features are important 
for promotion of gene transcription [6467]. Interestingly, 
both the Arabidopsis and Mimulus historical recombination 
signals overlap the +1 H2A.Z-containing nucleosome 
[44,61] (Figure 3). This overlap has functional significance 
as crossover frequency is reduced at multiple scales in the 
Arabidopsis arp6 mutant, which fails to deposit H2A.Z in 
chromatin [44]. Together this suggests that the meiotic re-
combination machinery in plants is recruited by gene-  
associated chromatin marks. We speculate that this reflects 
a mechanism to concentrate recombination around selec-
tively important sequences in gene-rich regions. 

In budding yeast meiotic DSBs occur mostly in nucleo-
some depleted regions at gene promoters [9,68]. High 
H3K4me3 levels are also associated with DSBs in budding 
yeast and removal of this epigenetic mark alters formation 
of DSBs [6972]. Many DSB hotspots are reduced in set1, 
but loci also exist that show increased DSBs [69]. The Spp1 
subunit of the Set1 (COMPASS) complex has been found to 
recognize H3K4me3 at gene promoters and also to interact 
with the meiotic chromosome axis protein Mer2 [6972], 
consistent with the tethered chromatin loop-axis model 
[7375]. As H3K4 methylation is also enriched over plant 
promoter hotspots, it will be interesting to investigate the 
extent to which this mechanism is conserved [44,45,58,60]. 
In Arabidopsis over-expression of a histone N-acetyltrans- 
ferase MEIOTIC CONTROL OF CROSSOVERS I (MCCI) 
leads to increased H3 acetylation, aberrant chromosome 
axes and alters chiasma number and distributions [76]. Spe-
cifically, chiasmata were reduced in chromosomes 1 and 2 
and increased in chromosome 4, with the latter acquiring 
more events on the short arm where repeat rDNA NOR ar-

 

 

Figure 3  Recombination and chromatin patterns at Arabidopsis gene promoter hotspots. Plots show historical Eurasian crossover frequency (cM/Mb) [44], 
H2A.Z [65], histone 3 lysine 4 trimethylation (H3K4me3) [67], and DNA methylation [91] in relation to gene features. The upper panels show the listed 
parameter for intron (red) and exon (blacks) positions at increasing distances from gene transcriptional start sites (TSSs). The lower panels show parameter 
density in 4 kb windows around TSS for hotspot promoters (red), coldspot promoters (blue) or randomly chosen positions.  
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rays are located [76]. Further work is required to determine  
how gene-associated chromatin marks interact to influence 
plant meiotic recombination at hotspot and domain scales.  

Analysis of Arabidopsis recombination hotspots has 
identified a class of CTT-repeat motifs associated with 
crossovers [44,45]. Historical recombination and the CTT- 
repeat motif are both coincident with the +1 nucleosome 
[44]. The function of this motif is presently unclear but one 
possibility is that it contributes to positioning of the +1 nu-
cleosome, which then has consequences on recombination. 
Alternatively, recombination may contribute to motif for-
mation in a similar way to microsatellites [77]. A-rich mo-
tifs were also detected upstream of TSSs, coincident with 
regions of low nucleosome density [44]. These motifs are 
most likely to contribute to nucleosome exclusion, which 
may then facilitate access of recombination proteins, such 
as Spo11 [9]. Recombination also associates with genetic 
diversity in many species [49,78,79], which may relate to 
potential mutagenic consequences of recombination. For 
example, conversion of A:T to G:C is thought to occur dur-
ing meiotic recombination due to an inherent GC-bias in the 
mismatch repair machinery [80]. Targeting of crossover 
hotspots to gene promoters may be ancestral within eukary-
otes, as it is shared between budding yeast and plants 
[9,44,45,61]. In contrast, mammalian hotspot locations are 
controlled by the PRDM9 protein, which directs hotspots to 
specific DNA motifs [8183]. However, in prdm9 mutant 
mouse recombination hotspots revert to promoter locations 
[84]. Therefore, PRDM9 is likely to be a derived hotspot 
targeting mechanism, consistent with it so far not being 
identified outside of animals [85]. 

3  Crossover suppression by plant hetero- 
chromatin 

Plant transposons and repeats typically form heterochroma-
tin and are densely modified by DNA cytosine methylation, 
histone H3K9 dimethylation (H3K9me2) and accumulate 
high levels of complementary small RNAs [41,42]. While 
these regions exclude Pol-II transcription, they are actively 
transcribed by two plant specific RNA-polymerases Pol-IV 
and Pol-V [86]. These polymerases generate RNA mole-
cules that serve as substrates for small RNA generation, 
which can then guide de novo DNA methyltransferase to 
homologous sequences—this pathway is termed RNA-  
directed DNA methylation [41,42]. Pol-IV and Pol-V are 
themselves recruited by heterochromatic marks which cre-
ates a self-reinforcing and stable epigenetic loop [8789]. 
Plant genomes show tight chromatin state transitions be-
tween adjacent genes and transposons, and maintenance of 
these boundaries can involve histone demethylation [9092]. 
In Arabidopsis there is a marked increase in repeat density 
and heterochromatin in the regions surrounding the centro-
meres, though dispersed repeats also occur within the gene- 

rich arms [90,91,93] (Figure 2). The heterochromatic re-
gions, including the centromeres, are suppressed for both 
Pol-II transcription and meiotic crossover [21,91,93,94]. It 
may be beneficial to suppress recombination in repetitive 
regions due to a high chance of illegitimate, non-allelic re-
combination, which could potentially be damaging to ge-
nome integrity. For example, centromere proximal cross- 
overs are associated with chromosome non-disjunction in 
humans [95]. 

The role of heterochromatic marks in crossover suppres-
sion has been experimentally tested. For example, targeted 
de novo DNA methylation in Ascobolus immerses is suffi-
cient to suppress crossovers by over a 100-fold [96]. In 
plants the role of DNA methylation has been addressed us-
ing mutants in the MET1 cytosine methyltransferase or 
DDM1 chromatin remodeling factor [43,4648]. MET1 and 
DDM1 function together to maintain DNA methylation ep-
igenetically across DNA replication forks [90,93,9799]. 
As a consequence the met1 and ddm1 mutations show a 
dramatic loss of DNA methylation, heterochromatin and 
ectopic Pol-II transcription of repeats and transposons 
[91,98,100,101]. These changes are most dramatic in the 
repetitive regions surrounding the centromeres. Recombina-
tion rates show epigenetic remodeling in met1 and ddm1 
mutants [43,4648]. Specifically, crossovers increase in the 
gene-rich chromosome arms and decrease in the pericen-
tromeric regions [43,4648]. However, total crossover lev-
els are similar between wild type and met1, indicating that 
remodeling of crossovers had occurred, rather than global 
increases or decreases [43]. These observations were unex-
pected as the regions of de-repressed heterochromatin might 
be predicted to show elevated crossovers. However, while it 
is possible that early meiotic recombination steps are in-
creased in repetitive regions in met1 and ddm1, compensa-
tory changes related to crossover interference/homeostasis, 
or other feedback mechanisms, could trigger the observed 
crossover remodeling [26,102,103]. Understanding these 
effects will require more detailed work profiling the differ-
ent steps of the recombination mechanism in met1 and 
ddm1. For example, while Spo11 accessibility may be in-
fluenced by changes in DNA methylation, it is also possible 
that strand invasion or other downstream recombination 
events could be changed. Small RNAs have also been im-
plicated in control of meiotic progression in rice where the 
MEIOSIS ARRESTED AT LEPTOTENE (MEL1) 
ARGONAUTE protein is required for germ cell develop-
ment and meiotic homologous chromosome synapsis 
[104,105]. ARGONAUTE proteins bind small RNAs and 
mediate base-pairing interactions with target nucleic acids. 
The exact function of MEL1 during meiosis is unknown, 
though it has a modest effect on heterochromatin 
(H3K9me2) in pericentromeric regions and binds germline- 
specific 21-nt phased small RNAs (phasiRNAs) [104,105]. 
Therefore, it is possible that MEL1 directly regulates mei-
otic chromosomes or that it may control a factor required  
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for progression of meiosis.  

4  Chromatin structure, the meiotic chromo-
some axes and homologous recombination 

Electron-microscopy has revealed that meiotic chromatin is 
organized in loop-base arrays along an underlying chromo-
some axis [73,106]. Formation of the meiotic axis initiates 
after S-phase and prior to DSB formation [107]. In budding 
yeast mutations in the axis components Rec8, Hop1 and 
Red1 result in reduced DSB formation [107111]. Spo11- 
dependent DSBs form on the chromatin loops that are teth-
ered to the axis, and DSBs are subsequently repaired at the 
axis via interactions between axis proteins and Spo11-  
accessory factors [70,71,74,75]. Remodeling of the meiotic 
axes is tightly coordinated with the progression of DNA 
repair and crossover formation [112,113]. During 
mid-prophase I, following DSB formation, recombination 
interactions between homologues favors chromosome 
alignment and synaptonemal complex (SC) formation in 
budding yeasts, plants and mice; but not in C. elegans and 
female Drosophila where SC formation is independent of 
DSBs [14,114117]. The SC has a tripartite proteinaceous 
structure comprising two homologous axes, referred to as 
lateral elements, which are linked to a central element by 
transverse filaments [118]. Interestingly, partial depletion of 
the synaptonemal complex component SYP-1 in C. elegans 
reduces crossover interference and thereby increases cross-
over frequency, indicating this structure can restrict crosso-
ver recombination [119]. 

The composition of plant meiotic axes has been studied 
through genetic screens, immunocytochemistry and bio-
chemistry [120]. Two major Arabidopsis axis components 
are ASY1 and ASY3, which share structural and functional 
similarities with budding yeast Hop1 and Red1, respectively 
[20,121123]. In the absence of ASY1, the duration of 
DMC1 association with chromatin is shortened and in-
ter-homolog crossover formation is significantly reduced 
[121]. A less severe defect in crossover formation is ob-
served in asy3 mutants, and asy1 is epistatic to asy3 for in-
ter-homolog crossover formation [20]. ASY1 forms chro-
matin foci in asy3 but its signal fails to linearize, indicating 
that ASY1 polymerisation is dependent on ASY3 [20]. Im-
portantly, ASY1 foci are SPO11 independent, suggesting 
that axis formation is not dependent on meiotic DSBs and 
may be recruited by pre-existing chromosomal features [20]. 
ASY1 foci have also been observed to alternate with H2A.Z 
foci on meiotic chromosomes, which may reflect loop-axis 
chromosome structure and formation of DSBs on loops 
away from the axis [44]. 

The axis also includes the cohesin complex, which forms 
a ring-structure comprising Structural Maintenance of 
Chromosome (SMC) family members SMC1 and SMC3, 
-kleisin SYN1/SCC1/REC8/DIF1 and SCC3 [124128]. 

Cohesin formation is established between sister chromatids 
during meiotic S-phase and is maintained along the chro-
mosome arms during prophase I [124,127,128]. Arabidopsis 
rec8 mutants display chromosome fragmentation and chro-
matin bridges, which can be recovered in a rec8 spo11 dou-
ble mutant, indicating a role for the cohesin complex in 
promoting recombination and DNA repair [124127]. 
Chromatin immunoprecipitation of cohesin components in 
budding yeast has shown that it co-localises with other axis 
proteins and is required for normal axis associations with 
chromatin [74,75,129]. A further important function of co-
hesin complexes is to prevent sister chromatids separating 
during the first meiotic division [130]. At anaphase-I cohe-
sin is lost from the chromosome arms via protein degrada-
tion, allowing homologous chromosomes to separate 
[131,132]. Cohesin remains at centromeric regions until 
anaphase-II, when its degradation allows the separation of 
sister chromatids into separate gametes [131,132]. REC8 is 
protected in the centromeric regions during anaphase-I by 
the SHUGOSHIN protein and later by PATRONUS 
[133136]. It will be interesting to integrate our under-
standing of chromatin with that of the meiotic axis, as these 
factors are likely to interact to influence recombination con-
trol.  

5  Prospects 

In recent years it has become clear that patterns of Pol-II 
transcription on eukaryotic chromosomes cannot be under-
stood without a complete understanding of their epigenetic 
organization. Emerging data from plants and other systems 
indicate that this is also the case for meiotic recombination. 
However, out of a vast array of epigenetic modifications of 
DNA and chromatin only a handful have been studied in 
relation to their effect on meiotic recombination and chro-
mosome behavior. Profiling DSBs and crossovers ge-
nome-wide, as well as cytogenetic studies of meiotic pro-
gression in plants with altered epigenetic landscapes, will be 
of interest. It will be important to determine how chromatin 
marks are involved in tethering and positioning components 
of meiotic recombination machinery to specific genomic 
locations. Understanding meiotic recombination will be 
important as it has a significant influence on genetic diver-
sity and speciation, for example, axis proteins have been 
implicated in the evolution of polyploid Arabidopsis species 
[137,138]. In addition, knowledge of how crossovers are 
controlled will allow this process to be manipulated in use-
ful ways in crop species [6]. 
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