Skip to main content
Log in

Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The present study provides an overview of existing literature on changes in soil organic carbon (SOC) of various terrestrial ecosystems in China. Datasets from the literature suggest that SOC stocks in forest, grassland, shrubland and cropland increased between the early 1980s and the early 2000s, amounting to (71±19) Tg·a−1. Conversion of marshland to cropland in the Sanjiang Plain of northeast China resulted in SOC loss of (6±2) Tg·a−1 during the same period. Nevertheless, large uncertainties exist in these estimates, especially for the SOC changes in the forest, shrubland and grassland. To reduce uncertainty, we suggest that future research should focus on: (i) identifying land use changes throughout China with high spatiotemporal resolution, and measuring the SOC loss and sequestration due to land use change; (ii) estimating the changes in SOC of shrubland and non-forest trees (i.e., cash, shelter and landscape trees); (iii) quantifying the impacts of grassland management on the SOC pool; (iv) evaluating carbon changes in deep soil layers; (v) projecting SOC sequestration potential; and (vi) developing carbon budget models for better estimating the changes in SOC of terrestrial ecosystems in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2008. WMO Greenhouse Gas Bulletin, Switzerland, 2009

    Google Scholar 

  2. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007

    Google Scholar 

  3. Batjes N H. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci, 1996, 47: 151–163, 10.1111/j.1365-2389.1996.tb01386.x, 1:CAS:528:DyaK28XlslKnsLo%3D

    Article  CAS  Google Scholar 

  4. Lal R. World soils and the greenhouse effect. Global Change News Lett, 1999, 37: 4–5

    Google Scholar 

  5. Watson R T, Noble I R. Carbon and the science-policy nexus: the Kyoto challenge. In: Steffen W, Jager J, Carson D, et al. eds. Challenges of a Changing Earth. Proceedings of the global change open science conference. Berlin: Springer, 2001. 57–64

    Google Scholar 

  6. Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China. Global Biogeochem Cy, 2003, 17: 1048–1058, 10.1029/2001GB001844, 1:CAS:528:DC%2BD3sXmsFygtbc%3D

    Google Scholar 

  7. Yu D S, Shi X Z, Wang H J, et al. National scale of soil organic carbon storage in China based on Chinese Soil Taxonomy. Pedosphere, 2007a, 17: 11–18, 10.1016/S1002-0160(07)60002-2, 1:CAS:528:DC%2BD2sXislClsbo%3D

    Article  CAS  Google Scholar 

  8. Yu D S, Shi X Z, Wang H J, et al. Regional patterns of soil organic carbon stocks in China. J Environ Manage, 2007b, 85: 680–689, 10.1016/j.jenvman.2006.09.020, 17126986, 1:CAS:528:DC%2BD2sXhtlertL3E

    Article  PubMed  CAS  Google Scholar 

  9. Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob Change Biol, 2007, 13: 1989–2007, 10.1111/j.1365-2486.2007.01409.x

    Article  Google Scholar 

  10. Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184–187, 10.1038/35041539, 11089968, 1:CAS:528:DC%2BD3cXotFChsLk%3D

    Article  PubMed  CAS  Google Scholar 

  11. Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165–173, 10.1038/nature04514, 16525463, 1:CAS:528:DC%2BD28XitFGitLo%3D

    Article  PubMed  CAS  Google Scholar 

  12. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123: 1–22, 10.1016/j.geoderma.2004.01.032, 1:CAS:528:DC%2BD2cXoslSmsLY%3D

    Article  CAS  Google Scholar 

  13. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623–1627, 10.1126/science.1097396, 15192216, 1:CAS:528:DC%2BD2cXks1Cgsrk%3D

    Article  PubMed  CAS  Google Scholar 

  14. Food and Agriculture Organization of the United Nations. Soil carbon sequestration for improved land management. Rome, 2001, 17–43

  15. State Environmental Protection Administration. 2006 Report on the State Environment in China (in Chinese). Beijing: 2007. 82–89

  16. Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009–1013, 10.1038/nature07944, 19396142, 1:CAS:528:DC%2BD1MXkvFKhtLc%3D

    Article  PubMed  CAS  Google Scholar 

  17. Wang S, Chen J M, Ju W M, et al. Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manage, 2007, 85: 524–537, 10.1016/j.jenvman.2006.09.019, 17137706, 1:CAS:528:DC%2BD2sXhtlertL3N

    Article  PubMed  CAS  Google Scholar 

  18. Chen P Q, Wang X K, Wang L M, et al. Carbon Budgets of Terrestrial Ecosystems and Countermeasures to Achieve Carbon Sink in China (in Chinese). Beijing: Science Press, 2008. 116–117

    Google Scholar 

  19. Shao Y, Pan J, Yang L, et al. Validation of soil organic carbon density using the InTEC model. J Environ Manage, 2007, 85: 696–701, 10.1016/j.jenvman.2006.09.006, 17101208, 1:CAS:528:DC%2BD2sXhtlertLrM

    Article  PubMed  CAS  Google Scholar 

  20. State Environmental Protection Administration. 2008 Report on the State Environment in China (in Chinese). Beijing: 2009. 54–56

  21. Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D-Earth Sci, 2007, 50: 1341–1350, 10.1007/s11430-007-0049-1, 1:CAS:528:DC%2BD2sXht1yiurrO

    Article  CAS  Google Scholar 

  22. Chen Z Z, Wang S P. Typical Grasslands Ecosystem of China (in Chinese). Beijing: Science Press, 2000. 1–5

    Google Scholar 

  23. Yang Y H, Fang J Y, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Change Biol, 2009, 15: 2723–2729, 10.1111/j.1365-2486.2009.01924.x

    Article  Google Scholar 

  24. Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Glob Change Biol, 2010, doi: 10.1111/j.1365-2486.2009.02123.x

  25. Janssens I A, Freibauer A, Ciais P, et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emission. Science, 2003, 300: 1538–1542, 10.1126/science.1083592, 12764201, 1:CAS:528:DC%2BD3sXktlKrtbg%3D

    Article  PubMed  CAS  Google Scholar 

  26. Pacala S W, Hurtt G C, Baker D, et al. Consistent land- and atmosphere-based US carbon sink estimates. Science, 2001, 292: 2316–2320, 10.1126/science.1057320, 11423659, 1:STN:280:DC%2BD3MzmtlWmsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  27. Metting F B, Smith J L, Amthor J S, et al. Science needs and new technology for increasing soil carbon sequestration. Clim Change, 2001, 51: 11–34, 10.1023/A:1017509224801

    Article  Google Scholar 

  28. Huang Y, Sun W J. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin Sci Bull, 2006, 51: 1785–1803, 10.1007/s11434-006-2056-6, 1:CAS:528:DC%2BD28XpvVejt7k%3D

    Article  CAS  Google Scholar 

  29. Sun W J, Huang Y, Zhang W, et al. Carbon sequestration and its potential in agricultural soils of China. Glob Biogeochem Cy, 2010, 24, GB3001, doi:10.1029/2009GB003484, 10.1029/2009GB003484

    Article  Google Scholar 

  30. Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob Change Biol, 2009, 15: 281–305, 10.1111/j.1365-2486.2008.01743.x

    Article  Google Scholar 

  31. Yu Y, Guo Z, Wu H, et al. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob Biogeochem Cy, 2009, 23, GB2021, doi:10.1029/2008GB003428, 10.1029/2008GB003428, 1:CAS:528:DC%2BD1MXhtVCgs73K

    Article  Google Scholar 

  32. Pan G X, Xu X W, Smith P, et al. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agr Ecosyst Environ, 2010, 136: 133–138, 10.1016/j.agee.2009.12.011

    Article  Google Scholar 

  33. Huang Y, Zhou G S, Wu J S, et al. Modelling Carbon Budgets of Terrestrial Ecosystems in China (in Chinese). Beijing: Science Press, 2008. 143–211

    Google Scholar 

  34. Huang Y, Yu Y Q, Zhang W, et al. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agr Forest Meteorol, 2009, 149: 106–129, 10.1016/j.agrformet.2008.07.013

    Article  Google Scholar 

  35. Huang Y, Zhang W, Sun W J, et al. Net primary production of Chinese croplands from 1950 to 1999. Ecol Appl, 2007, 17: 692–701, 10.1890/05-1792, 17494389

    Article  PubMed  Google Scholar 

  36. China Wetland Resources Development and Environmental Protection Research Group. Reviewing the history of developing land resources in Sanjiang plain (in Chinese). Territory Nat Res Stud, 1998, 1: 15–19

    Google Scholar 

  37. Liu X T. Wetland resources and its sustainable use in Songnen-Sanjiang Plain (in Chinese with English abstract). Scientia Geographica Sinica, 17: 451–460

  38. Huang Y, Sun W J, Zhang W, et al. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob Change Biol, 2010, 16: 680–695, 10.1111/j.1365-2486.2009.01976.x

    Article  Google Scholar 

  39. Liu Z G, Zhang K M. Wetland soils carbon stock in the Sanjiang Plain (in Chinese with English abstract). J Tsinghua Univ (Sci Technol), 45: 788–791.

  40. Bolin B, Sukumar R. Global Perspective. In: Watson R T, Noble I R, Bolin B, et al, eds. Land Use, Land Use Change, and Forestry. Cambridge: Cambridge University Press, 2000. 23–51

    Google Scholar 

  41. Foley J A, DeFries R, Asner G P, et al. Global consequences of land use. Science, 2005, 309: 570–574, 10.1126/science.1111772, 16040698, 1:CAS:528:DC%2BD2MXmsFChtrs%3D

    Article  PubMed  CAS  Google Scholar 

  42. Wang X D, Li M H, Liu S Z, et al. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma, 2006, 134: 56–61, 10.1016/j.geoderma.2005.08.014, 1:CAS:528:DC%2BD28Xnt1Gqsrg%3D

    Article  CAS  Google Scholar 

  43. Li X G, Li F M, Bhupinderpal-Singh, et al. Soil management changes organic carbon pools in alpine pastureland soils. Soil Till Res, 2007, 93: 186–196, 10.1016/j.still.2006.04.003

    Article  Google Scholar 

  44. Gao J F, Pan G X, Jiang X S, et al. Land-use induced changes in topsoil organic carbon stock of paddy fields using MODIS and TM/ETM analysis: A case study of Wujiang County, China. J Environ Sci, 2008, 20: 852–858, 10.1016/S1001-0742(08)62137-3, 1:CAS:528:DC%2BD1cXps12nurY%3D

    Article  CAS  Google Scholar 

  45. Hu Y L, Zeng D H, Fan Z P, et al. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China. J Arid Environ, 2008, 72: 2193–2200, 10.1016/j.jaridenv.2008.07.007

    Article  Google Scholar 

  46. Yang Y S, Xie J S, Sheng H, et al. The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of southern China. J Geogr Sci, 2009, 19: 49–57, 10.1007/s11442-009-0049-5

    Article  Google Scholar 

  47. Chen G Q, Huang D Y, Su Y R, et al. Effects of soil organic matter in hilly red soils from mid-subtropics region under various utilization patterns (in Chinese). J Agro-Environ Sci, 2005, 24: 256–260, 1:CAS:528:DC%2BD2MXltVGks7k%3D

    CAS  Google Scholar 

  48. Yang Y S, Chen G, Wang Y X, et al. Carbon storage and allocation in Castanopsis kawakamii and Cunninghamia lanceolata plantations in subtropical China (in Chinese). Scientia Silvae Sinicae, 2006, 42: 43–47

    Google Scholar 

  49. Zhang L Q, Zhang M K. Changes of organic C, N and P pools in red soil in transformation between agricultural land and forestry land (in Chinese). J Zhejiang Forest College, 2006, 23: 75–79

    Google Scholar 

  50. Zhou T, Shi P J. Indirect impacts of land use change on soil organic carbon change in China (in Chinese). Adv Earth Sci, 2006, 21: 138–143

    Google Scholar 

  51. Penman J, Gytarsky M, Hiraishi T, et al. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES), 2003. http://www.ipcc-nggip.iges.or.jp

  52. Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between Changes in the Climate System and Biogeochemistry. In: Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007

    Google Scholar 

  53. Liu J Y, Wang S Q, Chen J M, et al. Storages of soil organic carbon and nitrogen and land use changes in China: 1990–2000 (in Chinese). Acta Geograph Sinica, 2004, 59: 483–496

    Article  Google Scholar 

  54. Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320–2322, 10.1126/science.1058629, 11423660, 1:CAS:528:DC%2BD3MXkslShtr4%3D

    Article  PubMed  CAS  Google Scholar 

  55. Potter C, Klooster S, Hiatt S, et al. Satellite-derived estimates of potential carbon sequestration through afforestation of agricultural lands in the United States. Clim Change, 2007, 80: 323–336, 10.1007/s10584-006-9109-3, 1:CAS:528:DC%2BD2sXps1WmsA%3D%3D

    Article  CAS  Google Scholar 

  56. Xie J S, Yang Y S, Chen G S, et al. Effect of vegetation restoration on water stability and organic carbon distribution in aggregates of degrade red soil in subtropics in China (in Chinese). Acta Ecolo Sinica, 2008, 28: 702–709, 1:CAS:528:DC%2BD1cXkvVejsrk%3D

    CAS  Google Scholar 

  57. Zhang G B, Tian D L, Fang X, et al. Distribution characteristics of soil organic carbon in Huitong as affected by different afforestation models for conversion of cropland to forestland (in Chinese). J Central South U Forest Tech, 2008, 28: 8–12

    Google Scholar 

  58. Huang C D, Zhang J, Yang W Q, et al. Soil organic carbon density in plantations of hilly region in the western Sichuan (in Chinese). J Zhejiang Forest Sic Tech, 2009, 29: 5–8, 1:CAS:528:DC%2BD1MXhsFOhsrjL

    CAS  Google Scholar 

  59. Laganière J, Angers D A, Parè D. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol, 2010, 16: 439–453, 10.1111/j.1365-2486.2009.01930.x

    Article  Google Scholar 

  60. Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314: 1417, 10.1126/science.1130168, 17138894, 1:CAS:528:DC%2BD28Xht1CntrvP

    Article  PubMed  CAS  Google Scholar 

  61. Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol, 2000, 6: 317–328, 10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  62. Berthrong S T, Jobbágy E G, Jackson R B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl, 2009, 19: 2228–2241, 10.1890/08-1730.1, 20014590

    Article  PubMed  Google Scholar 

  63. Duan W X, Zhu B, Liu R, et al. Carbon dynamics in Cryptomeria fortunei plantations (in Chinese). J Beijing Forest Univ, 2007, 29: 55–59, 1:CAS:528:DC%2BD2sXhsVCgsb%2FI

    CAS  Google Scholar 

  64. Wang C M, Liu Y H, Shao B, et al. Quantifying the soil carbon changes following the afforestation of former arable land (in Chinese). J Beijing Forest Univ, 2007, 29: 112–119

    Google Scholar 

  65. Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecol Manage, 2002, 168: 241–257, 10.1016/S0378-1127(01)00740-X

    Article  Google Scholar 

  66. Huang C D, Zhang J, Deng Y L, et al. Carbon storage and allocation patterns of young forests converted by farmland (in Chinese). J Soil Water Conserv, 2007, 21: 130–133

    Google Scholar 

  67. Bai X S, Hu Y L, Zeng D H, et al. Effects of farmland afforestation on ecosystem carbon stock and its distribution pattern in semi-arid region of northwest China (in Chinese). Chin J Ecol, 2008, 27: 1647–1652

    Google Scholar 

  68. National Bureau of Statistics of China. The past 60-year (1949–2009) in China (in Chinese). Beijing: China Statistics Press, 2009

    Google Scholar 

  69. Li Z C, Xu D Y, Fu M Y, et al. Effects of land-use change on vertical distribution and storage of soil organic carbon in north subtropical areas (in Chinese). For Res, 2007, 20: 744–749

    Google Scholar 

  70. Zhang X L, Li J J, Shi F C. Organic carbon and nitrogen contents and microbial biomass in soil under rapid-growth poplar plantation (in Chinese). J Ecol Rural Environ, 2008, 24: 32–35, 1:CAS:528:DC%2BD1cXntFGjtL0%3D

    CAS  Google Scholar 

  71. Wan M, Tian D L, Fan W. Spatial and temporal distribution characteristics of soil organic carbon in the agro-forestry systems of eastern Henan plain (in Chinese). J Central South Univ For Tech, 2009, 29: 1–5

    Google Scholar 

  72. Du Q L. Strategy for Sustainable Development of Grassland Production in China (in Chinese). Beijing: China Agriculture Press, 2006

    Google Scholar 

  73. Wu R, Tiessen H. Effect of land use on soil degradation in alpine grassland soil, China. Soil Sci Soc Am J, 2002, 66: 1648–1655, 10.2136/sssaj2002.1648, 1:CAS:528:DC%2BD38Xnt1Gru7g%3D

    Article  CAS  Google Scholar 

  74. Zou C, Wang K, Wang T, et al. Overgrazing and soil carbon dynamics in eastern Inner Mongolia of China. Ecol Res, 2007, 22: 135–142, 10.1007/s11284-006-0009-9, 1:CAS:528:DC%2BD2sXkslahuw%3D%3D

    Article  CAS  Google Scholar 

  75. Qiu D. The study on vegetation succession law of degraded grassland of “Black Soil Type” on southern Qinghai province (in Chinese). Chin Agric Sci Bull, 2005, 21: 284–293

    Google Scholar 

  76. Liu B, Wu N, Luo P, et al. Characteristics of soil nutrient distribution in high-altitude meadow ecosystems with different management and degradation scenarios (in Chinese). Chin J Eco-Agric, 2007, 15: 45–48, 1:CAS:528:DC%2BD2sXhtVGjtrrE

    CAS  Google Scholar 

  77. Zhou W H, Feng R Z, Man Y R. Characteristics of soil in different degraded pasture in the headwaters of the Yellow Rivers (in Chinese). Grassland Turf, 2008, 4: 24–28, 1:CAS:528:DC%2BD1cXms1Ki

    CAS  Google Scholar 

  78. Wang C T, Long R J, Wang Q L, et al. Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the headwater region of Three Rivers in China (in Chinese). Chin J Appl Environ Biol, 2008, 14: 225–230, 1:CAS:528:DC%2BD1MXkvF2qtrw%3D

    CAS  Google Scholar 

  79. Pei H K. Effect of different grazing intensity on soil nutrient and texture (in Chinese). J Qinghai Univ, 2004, 22: 29–31

    Google Scholar 

  80. Wang Q L, Cao G M, Wang C T. The impact of grazing on the activities of soil enzymes and soil environmental factors in alpine Kobresia pygmaea meadow (in Chinese). Plant Nutr Fert Sci. 2007, 13: 856–864, 1:CAS:528:DC%2BD1cXhtFClurrN

    CAS  Google Scholar 

  81. Dong Q M, Zhao X Q, Ma Y S, et al. Effect of grazing intensity on soil organic matter and organic carbon in alpine-cold artificial grassland (in Chinese). Chin Qinghai J Anim Vet Sci, 2007, 37: 6–8

    Google Scholar 

  82. Qiu Y, Gan Y M, Wang Q, et al. Preliminary study on classified index system of grazing alpine meadow in northwest Sichuan (in Chinese). Hubei Agric Sci, 2007, 46: 723–726

    Google Scholar 

  83. Qu W L, Pei S F, Zhou Z G, et al. Influences of overgrazing and exclosure on Carbon of soils and characteristics of vegetation in desert steppe, Inner Mongolia, north China (in Chinese). J Gansu Forest Sci Tech, 2004, 29: 4–6

    Google Scholar 

  84. Xue B, Hu X L, Liu J, et al. Influence of enclosure on soil fertility and vegetation character in the degenerative meadow (in Chinese). J Inner Mongolia Forest Sci Tech, 2008, 34: 18–21

    Google Scholar 

  85. Jia H T, Jiang P A, Zhao C Y, et al. The influence of enclosing life on carbon distribution of grassland ecosystem (in Chinese). Agric Res Arid Areas, 2009, 27: 33–36

    Google Scholar 

  86. Su Y Z, Li Y L, Cui J Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 2005, 59: 267–278, 10.1016/j.catena.2004.09.001

    Article  Google Scholar 

  87. Cui X, Wang Y, Niu H, et al. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol Res, 2005, 20: 519–527, 10.1007/s11284-005-0063-8

    Article  Google Scholar 

  88. Pei S, Fu H, Wan C. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric Ecosyst Environ, 2008, 124: 33–39, 10.1016/j.agee.2007.08.008

    Article  Google Scholar 

  89. He N P, Yu Q, Wu L, et al. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem, 2008, 40: 2952–2959, 10.1016/j.soilbio.2008.08.018, 1:CAS:528:DC%2BD1cXhtlGgsLvK

    Article  CAS  Google Scholar 

  90. Wu L, He N, Wang Y, et al. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. J Environ Qual, 2008, 37: 663–668, 10.2134/jeq2007.0196, 18396553, 1:CAS:528:DC%2BD1cXjsVWktLw%3D

    Article  PubMed  CAS  Google Scholar 

  91. Jia X H, Li X R, Li Y S. Soil organic carbon and nitrogen dynamics during the re-vegetation process in the arid desert region (in Chinese). J Plant Ecol. 2007, 31: 66–74

    Article  Google Scholar 

  92. Shi F, Li Y E, Gao Q Z, et al. Effects of managements on soil organic carbon of grassland in China (in Chinese). Pratacultural Sci, 2009, 26(3): 9–15, 1:CAS:528:DC%2BD1MXhsVWiurfK

    CAS  Google Scholar 

  93. Boddey R M, Jantalia C P, Conceic P C, et al. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob Change Biol, 2010, 16: 784–795, 10.1111/j.1365-2486.2009.02020.x

    Article  Google Scholar 

  94. Baker J M, Ochsner T E, Venterea R T, et al. Tillage and carbon se-questration — What do we really know? Agric Ecosyst Environ, 2007, 118: 1–4, 10.1016/j.agee.2006.05.014, 1:CAS:528:DC%2BD28Xht1CnsL3F

    Article  CAS  Google Scholar 

  95. Blanco-Canqui H, Lal R. No-Tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci Soc Am J, 2008, 72: 693–701, 10.2136/sssaj2007.0233, 1:CAS:528:DC%2BD1cXmtlans7s%3D

    Article  CAS  Google Scholar 

  96. Gu Q Z, Yang X Y, Sun B H, et al. Effects of long-term fertilization and irrigation on soil nutrient distribution in profile of Loess soil (in Chinese). Chin Agric Sci Bull, 2004, 20: 139–142

    Google Scholar 

  97. Fan J, Hao M D, Dang T H. Effect of long-term fertilization on nutrient distribution in profiles of black loessial soil (in Chinese). Plant Nutr Fert Sci, 2001, 7: 249–254

    Google Scholar 

  98. Shi J P, Zhang F D, Lin B. Effects of long-term located fertilization on contents of soil humus (in Chinese). Soil Fert, 2002, 1: 15–19

    Google Scholar 

  99. Franzluebbers A J, Stuedemann J A. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric Ecosyst Environ, 2009, 129: 28–36, 10.1016/j.agee.2008.06.013, 1:CAS:528:DC%2BD1cXhsVCmsb3O

    Article  CAS  Google Scholar 

  100. Pan G X, Wu L S, Li L Q, et al. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China. J Environ Sci, 2008, 20: 456–463, 10.1016/S1001-0742(08)62079-3, 1:CAS:528:DC%2BD1cXmtFOktrs%3D

    Article  CAS  Google Scholar 

  101. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan, 2006

    Google Scholar 

  102. Zhang X Q, Chen X G, Wu S H. Methodological issues related to measuring and monitoring carbon stock changes induced by land use change and forestry activities (in Chinese). Acta Ecologica Sinica, 2004, 24: 2068–2073

    Google Scholar 

  103. Holmes K W, Chadwick O A, Kyriakidis P C, et al. Large-area spatially explicit estimates of tropical soil carbon stocks and response to land-cover change. Global Biogeochem Cy, 2006, 20, GB3004, doi:10.1029/2005GB002507, 10.1029/2005GB002507, 1:CAS:528:DC%2BD28XhtFymsrvL

    Article  Google Scholar 

  104. Knorr W, Heimann M. Uncertainties in global terrestrial biosphere modeling, Part I: a comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochem Cy, 2001a, 15: 207–225, 10.1029/1998GB001059, 1:CAS:528:DC%2BD3MXisVChtL8%3D

    Article  CAS  Google Scholar 

  105. Knorr W, Heimann M. Uncertainties in global terrestrial biosphere modeling, Part II: global constraints for a process-based vegetation model. Global Biogeochem Cy, 2001b, 15: 227–246, 10.1029/1998GB001060, 1:CAS:528:DC%2BD3MXisVChtLw%3D

    Article  CAS  Google Scholar 

  106. Li C S, Zhang Y H, Frolking S, et al. Modeling soil organic carbon change in croplands of China. Ecol Appl, 2003, 13: 327–336, 10.1890/1051-0761(2003)013[0327:MSOCCI]2.0.CO;2

    Article  Google Scholar 

  107. U.S. Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2006. Washington, DC, USA, 2008.

  108. Zhang F C, Zhu Z H. Harvest index for various crops in China (in Chinese). Chin Agric Sic, 23: 83–87

  109. Liu X H, Gao W S, Zhu W S. Mechanism and Techniques in Straw Application (in Chinese). Beijing: China Agriculture Press, 2001. 1–215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Sun, W., Zhang, W. et al. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review. Sci. China Life Sci. 53, 766–775 (2010). https://doi.org/10.1007/s11427-010-4022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4022-4

Keywords

Navigation