Skip to main content
Log in

Structural changes of cellobiohydrolase I (1,4-β-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-β-D-cellobioside) during the binding process

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Conformational changes to 1,4-β-D-glucan cellobiohydrolase I (CBHI) in response to its binding with p-nitrophenyl β-D-cellobioside (PNPC) were analyzed by second-derivative fluorescence spectrometry at the saturation binding point. Irreversible changes to the configuration of PNPC during the course of the binding process were characterized by UV spectral analysis. Isothermal titration calorimetry (ITC) was used to determine the stoichiometry of binding (i.e. the number of molar binding sites) of PNPC to CBHI. Two points on the surface of the CBHI molecule interact with PNPC, and irreversible changes to the configuration of PNPC occur during its conversion to p-nitrophenyl (PNP). The ITC studies demonstrated that the binding of PNPC to CBHI is an irreversible process, in which heat is released, but where there is no reversible equilibrium between PNPC-CBHI and CBHI and PNPC. On the other hand, PNP and cellobiose need to be released from the PNPC-CBHI complex to facilitate the repeated binding of new PNPC molecules to the renewable CBHI molecules. Therefore, we speculate that the energy, which powers the configurational change of PNPC as it is converted to PNP, is generated from cyclic changes in the conformation of CBHI during the binding/de-sorption process. These new insights may provide a basis for a better understanding of the binding mechanism in enzyme-substrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koshland D E Jr. Correlation of structure and function in enzyme action. Science, 1963, 142: 1533–1541 14075684, 10.1126/science.142.3599.1533, 1:CAS:528:DyaF2cXjvF2nsA%3D%3D

    Article  CAS  Google Scholar 

  2. Citri N. Conformational adaptability in enzymes. Adv Enzymol. Relat Areas Mol Biol, 1973, 37: 397–648 4632894, 10.1002/9780470122822.ch7, 1:STN:280:DyaE3s7kvV2lsQ%3D%3D

    CAS  Google Scholar 

  3. Koshland D E Jr, Neet K E. The catalytic and regulatory properties of enzymes. Annul Rev Biochem, 1968, 37: 359–410 10.1146/annurev.bi.37.070168.002043, 1:CAS:528:DyaF1MXjsVGjtg%3D%3D

    Article  CAS  Google Scholar 

  4. Teeri T T, Koivula A, Linder M, et al. Trichoderma reesei cellobiohydrolases: Why so efficient on crystalline cellulose? Biochem Soc Trans, 1998, 26: 173–178 9649743, 1:CAS:528:DyaK1cXjvVaktbs%3D

    Article  CAS  Google Scholar 

  5. Linder M, Mattinen M L, Kontteli M, et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci, 1995, 4: 1056–1064 7549870, 1:CAS:528:DyaK2MXmsFyrs7w%3D

    Article  CAS  Google Scholar 

  6. Koivula A, Kinnari T, Harjunpaa V, et al. Tryptophan 272: An essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett, 1998, 429: 341–346 9662445, 10.1016/S0014-5793(98)00596-1, 1:CAS:528:DyaK1cXjvFOiu7c%3D

    Article  CAS  Google Scholar 

  7. Boraston A B, Ghaffari M, Warren R A J, et al. Identification and glucan-binding properties of a new carbohydrate-binding module family. Biochem J, 2002, 361: 45–40 10.1042/0264-6021:3610035

    Article  Google Scholar 

  8. Carvalho A L, Goyal A, Prates J A, et al. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4-and beta-1,3-1,4-mixed linked glucans at a single binding site. J Biol Chem, 2004, 279: 34785–34793 15192099, 10.1074/jbc.M405867200, 1:CAS:528:DC%2BD2cXmvFemsL8%3D

    Article  CAS  Google Scholar 

  9. Boraston A B. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven, Biochem J, 2005, 385: 479–484 15487986, 10.1042/BJ20041473, 1:CAS:528:DC%2BD2MXhvVCmtg%3D%3D

    Article  CAS  Google Scholar 

  10. Gutteridge A, Thornton J. Conformational changes observed in enzyme crystal structures upon substrate binding. J Mol Biol, 2005, 346: 21–28 15663924, 10.1016/j.jmb.2004.11.013, 1:CAS:528:DC%2BD2MXkvFOqsw%3D%3D

    Article  CAS  Google Scholar 

  11. Gao P J, Chen G J, Wang T H, et al. Non-hydrolytic disruption of crystalline structure of cellulose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinellum. Acta Biochim Biophys Sin, 2001, 33: 13–18 12053182, 1:CAS:528:DC%2BD3MXhvFWjsrg%3D

    CAS  Google Scholar 

  12. Wang L S, Liu J, Zhang Y Z, et al. Comparison of domains function between cellobiohydrolase I and endoglucanase I from Trichoderma pseudokoningii S38 by limited proteolysis. J Mol Catalysis B-Enzyme, 2003, 24–25: 27–28 10.1016/S1381-1177(03)00070-5, 1:CAS:528:DC%2BD3sXmvVyhu78%3D

    Article  Google Scholar 

  13. Wang L S, Zhang Y Z, Gao P J, et al. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotech Bioeng, 2006, 93: 443–456 10.1002/bit.20730, 1:CAS:528:DC%2BD28XhtlyqtLo%3D

    Article  CAS  Google Scholar 

  14. Wu B, Zhao Y, Gao P J. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin (Shanghai), 2006, 38: 372–378 10.1111/j.1745-7270.2006.00179.x, 1:CAS:528:DC%2BD28XntlWksb4%3D

    Article  CAS  Google Scholar 

  15. Argirova M C, Argirov O K. Correlation between the UV spectra of glycated peptides and amino acids. Spectrochim Acta A, 1999, 55: 245–250

    Article  Google Scholar 

  16. Toptygin D, Brand L. Analysis of equilibrium binding data obtained by linear-response spectroscopic techniques. Anal Biochem, 1995, 234: 330–338 10.1006/abio.1995.1048

    Article  Google Scholar 

  17. Ma D B, Gao P J, Wang Z N. Preliminary studies on the mechanism of cellulose formation by Trichoderma pseudokoningii S-38. Enzyme Microb Technol, 1990, 12: 631–635 10.1016/0141-0229(90)90139-H, 1:CAS:528:DyaK3cXkvFCmurs%3D

    Article  CAS  Google Scholar 

  18. Yan B X, Sun Y Q, Gao P J. Intrinsic fluorescence in endoglucanase and cellobiohydrolase from Trichoderma pseudokiningii S-38: Effects of pH, quenching agents, and ligand binding. J Protein Chem, 1997, 16: 681–688 9330226, 10.1023/A:1026354403952, 1:STN:280:DyaK2svntFartw%3D%3D

    Article  CAS  Google Scholar 

  19. Kumar V, Sharma V K, Kalonia D S. Second derivative tryptophan fluorescence spectroscopy as a tool to characterize partially unfolded intermediates of proteins. Int J Pharm, 2005, 294: 193–199 15814244, 10.1016/j.ijpharm.2005.01.024, 1:CAS:528:DC%2BD2MXjt1agsrw%3D

    Article  CAS  Google Scholar 

  20. Mozo-Villarias A. Second derivative fluorescence spectroscopy of tryptophan in proteins. J Biochem Biophys Methods, 2002, 50: 163–178 11741705, 10.1016/S0165-022X(01)00181-6, 1:CAS:528:DC%2BD3MXovFyqtrw%3D

    Article  CAS  Google Scholar 

  21. Schumaker L L. Spline functions: Basic Theory, Pure & Applied Mathematics. New York: John Wiley & Sons Inc, 1981

    Google Scholar 

  22. Purves R D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J Pharmacokinet Biopharm, 1992, 20: 211–226 1522479, 10.1007/BF01062525, 1:STN:280:DyaK38zpsFGjsw%3D%3D

    Article  CAS  Google Scholar 

  23. Parchevsky K V, Parchcevsky V P. Determination of instantaneous growth rates using a cubic spline approximation. Thermochima ACTA, 1998, 309: 181–192 10.1016/S0040-6031(97)83272-8, 1:CAS:528:DyaK1cXhtFynurk%3D

    Article  CAS  Google Scholar 

  24. Jezewska M J, Bujalowski W. Quantitative analysis of ligand-macromolecule interactions using differential dynamic quenching of the ligand fluorescence to monitor the binding. Biophys Chem, 1997, 64: 253–269 9127949, 10.1016/S0301-4622(96)02221-1, 1:CAS:528:DyaK2sXitVKksbo%3D

    Article  CAS  Google Scholar 

  25. Royer C A, Mann C J, Matthews C R. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci, 1993, 2: 1844–1852 8268795, 1:CAS:528:DyaK2cXivFahtbk%3D

    Article  CAS  Google Scholar 

  26. Podesta F E, Plaxton W C. Fluorescence study of ligand binding to potato tuber pyrophosphate-dependent phosphofructokinase: Evidence for competitive binding between fructose-1,6-bisphosphate and fructose-2,6-bisphosphate. Arch Biochem Biophys, 2003, 414: 101–107 12745260, 10.1016/S0003-9861(03)00157-7, 1:CAS:528:DC%2BD3sXjs1ert74%3D

    Article  CAS  Google Scholar 

  27. Sulkowska A, Równicka J, Bojko B, et al. Effect of guanidine hydrochloride on bovine serum albumin complex with anti-thyroid drugs: Fluorescence study. J Mol Struct, 2004, 704: 291–295 10.1016/j.molstruc.2003.12.065, 1:CAS:528:DC%2BD2cXms1ylsLw%3D

    Article  CAS  Google Scholar 

  28. Wiseman T, Williston S, Brandts J F, et al. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem, 1989, 179: 131–137 2757186, 10.1016/0003-2697(89)90213-3, 1:CAS:528:DyaL1MXktlKjsrw%3D

    Article  CAS  Google Scholar 

  29. Fisher H F, Singh N. Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol, 1995, 259: 194–221 8538455, 10.1016/0076-6879(95)59045-5, 1:CAS:528:DyaK28XmvVGluw%3D%3D

    Article  CAS  Google Scholar 

  30. Zhao Y, Wu B, Gao P J. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Sci China Ser C-Life Sci, 2004, 47: 18–24 10.1360/02yc0163, 1:CAS:528:DC%2BD2cXitFagt78%3D

    Article  CAS  Google Scholar 

  31. Li R S, Wan R. Nonequilibrium and nonlinear chemistry. Prog Chem, 1996, 8: 17–29

    Google Scholar 

  32. Zhai Y C, Wang J X. Thermodynamics of irreversible process in homogeneous single chemical reaction. J Northeastern Univ (Nature Science), 2004, 25: 994–997 1:CAS:528:DC%2BD2MXhsFCkt7g%3D

    CAS  Google Scholar 

  33. Wang Z X, Tsou C L. Kinetics of substrate reaction during irreversible modification of enzyme activity for enzymes involving two substrates. J Theor Biol, 1987, 127(3): 253–270 3431125, 10.1016/S0022-5193(87)80106-6, 1:CAS:528:DyaL1cXisFyq

    Article  CAS  Google Scholar 

  34. Frieden C. Treatment of enzyme kinetic data. J Biol chem, 1964, 239: 3522–3531 14245413, 1:CAS:528:DyaF2cXks1aku7Y%3D

    CAS  Google Scholar 

  35. Topham C M. Half-time analysis of the kinetics of irreversible enzyme inhibition by unstable site-specific reagent. Biochem Biophys Acta, 1988, 955: 65–76 3382673, 1:CAS:528:DyaL1cXks12nsL0%3D

    CAS  Google Scholar 

  36. Johnson K A. Transient-state kinetic analysis of enzyme reaction pathways. The Enzyme, 1992, 20: 1–61 1:CAS:528:DyaK3sXlsVOitA%3D%3D

    CAS  Google Scholar 

  37. Golicnik M, Stojan J. Generalization theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor. J Chem Inf Comput Sci, 2003, 43: 1486–1493 14502482, 10.1021/ci0304021, 1:CAS:528:DC%2BD3sXmtFOhtLg%3D

    Article  CAS  Google Scholar 

  38. Liao F, Zhu X Y, Wang Y M, et al. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables. J Biochem and Biophys Methods, 2005, 62: 13–24 10.1016/j.jbbm.2004.06.010, 1:CAS:528:DC%2BD2MXksl2hsA%3D%3D

    Article  CAS  Google Scholar 

  39. Ray C T G, Yourgra W. Acceleration of chemical reaction. Nature, 1956, 178: 809 10.1038/1781291a0

    Article  Google Scholar 

  40. Yourgra W, Ray C T G. Time variation of chemical affinity. Nature, 1958, 181: 80 10.1038/181080a0

    Article  Google Scholar 

  41. Bowen R M. Thermochemistry of reaction materials. J Chem Phys, 1968, 49: 1625–1637 10.1063/1.1670288, 1:CAS:528:DyaF1cXltVShtbw%3D

    Article  CAS  Google Scholar 

  42. Stockwell G R, Thornton J M. Conformational diversity of ligands bound to proteins. J Mol Biol, 2006, 356: 928–944 16405908, 10.1016/j.jmb.2005.12.012, 1:CAS:528:DC%2BD28XotVOitA%3D%3D

    Article  CAS  Google Scholar 

  43. Agmon N. Conformational cycle of a single working enzyme. J Phys Chem B, 2000, 104: 7830–7834 10.1021/jp0012911, 1:CAS:528:DC%2BD3cXkvV2qtbY%3D

    Article  CAS  Google Scholar 

  44. Wolfenden R, Snider M J. The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res, 2001, 34: 938–945 11747411, 10.1021/ar000058i, 1:CAS:528:DC%2BD3MXntlGrsrc%3D

    Article  CAS  Google Scholar 

  45. Vasquez M, Nemethy G, Scheraga H A. Conformational energy calculations on polypeptide and proteins. Chem Rev, 1994, 94: 2183–2239 10.1021/cr00032a002, 1:CAS:528:DyaK2cXmvFGiu7Y%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiJi Gao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30370013 and 30500007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Wang, L. & Gao, P. Structural changes of cellobiohydrolase I (1,4-β-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitrophenyl-β-D-cellobioside) during the binding process. SCI CHINA SER C 51, 459–469 (2008). https://doi.org/10.1007/s11427-008-0064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0064-2

Keywords

Navigation