Skip to main content
Log in

Amphiphilic miktoarm star copolymers can self-assemble into micelle-like aggregates in nonselective solvents: a case study of polyoxometalate based miktoarm stars

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is well-known that amphiphilic star-shaped copolymers can self-assemble in selective solvents to form complicated micellar constructs as a synergistic result of both the topological constraints and relative volume fractions of the arms. Although the association phenomena of amphiphilic stars have been observed in nonselective solvents, both the structural detail and formation mechanism of these associates are not clear yet. Moreover, these experimental observations are controversial with respect to molecularly dispersed starlike copolymers in nonselective solvents as is popularly believed. To clarify these issues, we have synthesized a series of polyoxometalate-based polystyrene-poly(ethylene glycol) (PS-PEG) miktoarm star supramolecular copolymers (SEW-1-5) by coupling a Keggin-type polyoxometalate of K4[α-SiW12O40] with 1,2,3-triazolium bridged block copolymers of PSn-b+-PEGmI (n=17, 26, 39, 57, 81; m=45) through ionic exchange reactions, respectively. TEM imaging, contact angle and 1H NMR studies reveal that SEW-2-5 self-assemble in chloroform, THF, and toluene to create micellelike aggregates ranging from cylinder to sphere with a PS corona and a PEG core, while for SEW-1, reverse bilayers are captured with a PEG corona and a PS core. Among these aggregates, the Keggin clusters of [α-SiW12O40]4− localize at the core-corona interfaces between PS and PEG. In terms of solvent quality, chloroform, THF, and toluene are only slightly poorer for PEG than that for PS with a relative order of chloroform<THF<toluene. These unexpected aggregates originate from the topological constraints of the chemically different arms of PS and PEG in the miktoarm stars, where the weak incompatibility between the PS and PEG arms is intensified appropriately. The presence of the reverse bilayered structures of SEW-1 is due to the magnified steric hindrance of the PEG45 arm with decreasing the molecular weight of the PS17 arm. However, to the best of our knowledge, these are the first examples clearly indicating that miktoarm star copolymers can self-assemble in common good solvents or slightly selective solvents to generate micellelike aggregates. This scenario is not only in sharp contrast to the intuitively considered behavior of unimolecular miktoarm stars in nonselective solvents, but also rather different from the conventional self-assembly behavior of amphiphilic star copolymers in selective solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Discher DE, Eisenberg A. Science, 2002, 297: 967–973

    Article  CAS  PubMed  Google Scholar 

  2. Won YY, Brannan AK, Davis HT, Bates FS. J Phys Chem B, 2002, 106: 3354–3364

    Article  CAS  Google Scholar 

  3. Chen Y. Macromolecules, 2012, 45: 2619–2631

    Article  CAS  Google Scholar 

  4. Warren NJ, Armes SP. J Am Chem Soc, 2014, 136: 10174–10185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Edelmann K, Janich M, Hoinkis E, Pyckhout-Hintzen W, Höring S. Macromol Chem Phys, 2001, 202: 1638–1644

    Article  CAS  Google Scholar 

  6. Ke F, Mo X, Yang R, Wang Y, Liang D. Macromolecules, 2009, 42: 5339–5344

    Article  CAS  Google Scholar 

  7. Meng W, He Q, Yu M, Zhou Y, Wang C, Yu B, Zhang B, Bu W. Polym Chem, 2019, 10: 4477–4484

    Article  CAS  Google Scholar 

  8. Iatridi Z, Tsitsilianis C. Polymers, 2011, 3: 1911–1933

    Article  CAS  Google Scholar 

  9. Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Chem Rev, 2016, 116: 6743–6836

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y. Macromol Rapid Commun, 2019, 40: 1800571

    Article  CAS  Google Scholar 

  11. Teng J, Zubarev ER. J Am Chem Soc, 2003, 125: 11840–11841

    Article  CAS  PubMed  Google Scholar 

  12. Polymeropoulos G, Zapsas G, Ntetsikas K, Bilalis P, Gnanou Y, Hadjichristidis N. Macromolecules, 2017, 50: 1253–1290

    Article  CAS  Google Scholar 

  13. Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. Science, 2004, 306: 98–101

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Hillmyer MA, Lodge TP. Langmuir, 2006, 22: 9409–9417

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Hillmyer MA, Lodge TP. Nano Lett, 2006, 6: 1245–1249

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Miao K, Zhao G, Li C, Zhao Y. Polym Chem, 2014, 5: 3071–3080

    Article  CAS  Google Scholar 

  17. Miao K, Liu H, Zhao Y. Polym Chem, 2014, 5: 3335–3345

    Article  CAS  Google Scholar 

  18. Zhao X, Wu W, Zhang J, Dai W, Zhao Y. Polym Chem, 2018, 9: 1095–1108

    Article  CAS  Google Scholar 

  19. Zhang Y, Cao M, Han G, Guo T, Ying T, Zhang W. Macromolecules, 2018, 51: 5440–5449

    Article  CAS  Google Scholar 

  20. Li S, Nie H, Gu S, Han Z, Han G, Zhang W. ACS Macro Lett, 2019, 8: 783–788

    Article  CAS  Google Scholar 

  21. Kong W, Li B, Jin Q, Ding D, Shi AC. J Am Chem Soc, 2009, 131: 8503–8512

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Wang Z, Yin Y, Jiang R, Li B. Macromolecules, 2019, 52: 3680–3688

    Article  CAS  Google Scholar 

  23. Li B, Zhu YL, Lu ZY. J Chem Phys, 2012, 137: 246102

    Article  PubMed  CAS  Google Scholar 

  24. Pispas S, Avgeropoulos A, Hadjichristidis N, Roovers J. J Polym Sci B Polym Phys, 1999, 37: 1329–1335

    Article  CAS  Google Scholar 

  25. Davis JL, Wang X, Bornani K, Hinestrosa JP, Mays JW, Kilbey Ii SM. Macromolecules, 2016, 49: 2288–2297

    Article  CAS  Google Scholar 

  26. Gauthier M, Tichagwa L, Downey JS, Gao S. Macromolecules, 1996, 29: 519–527

    Article  CAS  Google Scholar 

  27. Taton D, Cloutet E, Gnanou Y. Macromol Chem Phys, 1998, 199: 2501–2510

    Article  CAS  Google Scholar 

  28. Hansen CM. Hansen Solubility Parameters, A User’s Handbook. Boca Raton: CRC Press, 2000

    Google Scholar 

  29. Gitsov I, Fréchet JMJ. J Am Chem Soc, 1996, 118: 3785–3786

    Article  CAS  Google Scholar 

  30. Tsitsilianis C, Papanagopoulos D, Lutz P. Polymer, 1995, 36: 3745–3752

    Article  CAS  Google Scholar 

  31. Du J, Chen Y. Macromolecules, 2004, 37: 3588–3594

    Article  CAS  Google Scholar 

  32. Zhang Q, He L, Wang H, Zhang C, Liu W, Bu W. Chem Commun, 2012, 48: 7067–7069

    Article  CAS  Google Scholar 

  33. Zhang Q, Liao Y, He L, Bu W. Langmuir, 2013, 29: 4181–4186

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Liao Y, Bu W. Langmuir, 2013, 29: 10630–10634

    Article  CAS  PubMed  Google Scholar 

  35. Liao Y, Liu N, Zhang Q, Bu W. Macromolecules, 2014, 47: 7158–7168

    Article  CAS  Google Scholar 

  36. Liu N, He Q, Bu W. Langmuir, 2015, 31: 2262–2268

    Article  CAS  PubMed  Google Scholar 

  37. Liu N, He Q, Wang Y, Bu W. Soft Matter, 2017, 13: 4791–4798

    Article  CAS  PubMed  Google Scholar 

  38. He Q, Huang H, Zheng XY, Xiao J, Yu B, Kong XJ, Bu W. ACS Appl Mater Interfaces, 2018, 10: 16947–16951

    Article  CAS  PubMed  Google Scholar 

  39. Tézé A, Hervé G. Inorganic Synthesis. New York: John Wiley & Sons, 1990

    Google Scholar 

  40. Vlahos C, Hadjichristidis N. Macromolecules, 1998, 31: 6691–6696

    Article  CAS  Google Scholar 

  41. Rubio AM, Brea P, Freire JJ, Vlahos C. Macromolecules, 2000, 33: 207–216

    Article  CAS  Google Scholar 

  42. Steinschulte AA, Schulte B, Erberich M, Borisov OV, Plamper FA. ACS Macro Lett, 2012, 1: 504–507

    Article  CAS  Google Scholar 

  43. Hebbeker P, Steinschulte AA, Schneider S, Okuda J, Möller M, Plamper FA, Schneider S. Macromolecules, 2016, 49: 8748–8757

    Article  CAS  Google Scholar 

  44. Zhang WB, Tu Y, Ranjan R, Van Horn RM, Leng S, Wang J, Polce MJ, Wesdemiotis C, Quirk RP, Newkome GR, Cheng SZD. Macromolecules, 2008, 41: 515–517

    Article  CAS  Google Scholar 

  45. Poelma JE, Ono K, Miyajima D, Aida T, Satoh K, Hawker CJ. ACS Nano, 2012, 6: 10845–10854

    Article  CAS  PubMed  Google Scholar 

  46. Yang W, Li Y, Zhang J, Chen N, Chen S, Liu H, Li Y. J Org Chem, 2011, 76: 7750–7756

    Article  CAS  PubMed  Google Scholar 

  47. Ji E, Pellerin V, Rubatat L, Grelet E, Bousquet A, Billon L. Macromolecules, 2017, 50: 235–243

    Article  CAS  Google Scholar 

  48. Li D, Li H, Wu L. Polym Chem, 2014, 5: 1930–1937

    Article  CAS  Google Scholar 

  49. Gitsov I, Frechet JMJ. Macromolecules, 1993, 26: 6536–6546

    Article  CAS  Google Scholar 

  50. He Q, Wang C, Xiao J, Wang Y, Zhou Y, Zheng N, Zhang B, Bu W. J Mater Chem C, 2018, 6: 12187–12191

    Article  CAS  Google Scholar 

  51. Takahashi Y, Tadokoro H. Macromolecules, 1973, 6: 672–675

    Article  CAS  Google Scholar 

  52. Rubinstein M, Colby RH. Polymer Physics. Oxford, New York: Oxford University Press, 2003

    Google Scholar 

  53. Okubayashi S, Itoh Y, Shosenji H. J Appl Polym Sci, 2005, 97: 545–549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21674044, 21504036, 21474044), the Open Project of State Key Laboratory of Supramolecular Structure and Materials of Jilin University (sklssm201903) and the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (2018-25).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun He or Weifeng Bu.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2019_9709_MOESM1_ESM.pdf

Amphiphilic miktoarm star copolymers can self-assemble into micelle-like aggregates in nonselective solvents: a case study of polyoxometalate based miktoarm stars

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., He, Q., Qiu, S. et al. Amphiphilic miktoarm star copolymers can self-assemble into micelle-like aggregates in nonselective solvents: a case study of polyoxometalate based miktoarm stars. Sci. China Chem. 63, 792–801 (2020). https://doi.org/10.1007/s11426-019-9709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9709-7

Key Words

Navigation