Skip to main content
Log in

Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

For the metal-catalyzed asymmetric hydrogenation of α-substituted ketones, cis reductive products are generally obtained due to steric hindrance of substituents. Herein, an unprecedented trans reductive products were observed in palladium-catalyzed hydrogenative desymmetrization of cyclic and acyclic 1,3-diketones, providing the chiral trans β-hydroxy ketones with two adjacent stereocenters including one α-tertiary or quaternary stereocenter with high enantioselectivity and diastereoselectivity. Mechanistic studies and DFT calculations suggested that the rarely observed diastereoselectivity reversal is ascribed to the charge-charge interaction between the palladium and aromatic ring of the substrate, which could not only result in the reversal of the diastereoselectivity, but also improve the reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jäkel C, Paciello R. Chem Rev, 2006, 106: 2912–2942

    PubMed  Google Scholar 

  2. Tang W, Zhang X. Chem Rev, 2003, 103: 3029–3070

    CAS  PubMed  Google Scholar 

  3. Verendel JJ, Pàmies O, Diéguez M, Andersson PG. Chem Rev, 2014, 114: 2130–2169

    CAS  PubMed  Google Scholar 

  4. Johnson NB, Lennon IC, Moran PH, Ramsden JA. Acc Chem Res, 2007, 40: 1291–1299

    CAS  PubMed  Google Scholar 

  5. Wang DS, Chen QA, Lu SM, Zhou YG. Chem Rev, 2012, 112: 2557–2590

    CAS  PubMed  Google Scholar 

  6. Zhang Z, Butt NA, Zhang W. Chem Rev, 2016, 116: 14769–14827

    CAS  PubMed  Google Scholar 

  7. Xie JH, Zhu SF, Zhou QL. Chem Rev, 2011, 111: 1713–1760

    CAS  PubMed  Google Scholar 

  8. Noyori R, Ohkuma T. Angew Chem Int Ed, 2001, 40: 40–73

    CAS  Google Scholar 

  9. Morris RH. Chem Soc Rev, 2009, 38: 2282

    CAS  PubMed  Google Scholar 

  10. Malacea R, Poli R, Manoury E. Coord Chem Rev, 2010, 254: 729–752

    CAS  Google Scholar 

  11. Baiker A. Chem Soc Rev, 2015, 44: 7449–7464

    CAS  PubMed  Google Scholar 

  12. Li YY, Yu SL, Shen WY, Gao JX. Acc Chem Res, 2015, 48: 2587–2598

    CAS  PubMed  Google Scholar 

  13. For selected examples on asymmetric hydrogenation of α-alkyl or aryl substituted ketones: Ohkuma T, Li J, Noyori R. SynLett, 2004, 8: 1383

    Google Scholar 

  14. Lin H, Xiao LJ, Zhou MJ, Yu HM, Xie JH, Zhou QL. Org Lett, 2016, 18: 1434–1437

    CAS  PubMed  Google Scholar 

  15. Peach P, Cross DJ, Kenny JA, Mann I, Houson I, Campbell L, Walsgrove T, Wills M. Tetrahedron, 2006, 62: 1864–1876

    CAS  Google Scholar 

  16. Nishiyama H, Park SB, Itoh K. Tetrahedron-Asymmetry, 1992, 3: 1029–1034

    CAS  Google Scholar 

  17. Baratta W, Barbato C, Magnolia S, Siega K, Rigo P. Chem Eur J, 2010, 16: 3201–3206

    CAS  PubMed  Google Scholar 

  18. Fernández R, Ros A, Magriz A, Dietrich H, Lassaletta JM. Tetrahedron, 2007, 63: 6755–6763

    Google Scholar 

  19. Liu C, Xie JH, Li YL, Chen JQ, Zhou QL. Angew Chem Int Ed, 2013, 52: 593–596

    CAS  Google Scholar 

  20. Cheng LJ, Xie JH, Chen Y, Wang LX, Zhou QL. Org Lett, 2013, 15: 764–767

    CAS  PubMed  Google Scholar 

  21. She Z, Wang Y, Wang D, Zhao Y, Wang T, Zheng X, Yu ZX, Gao G, You J. J Am Chem Soc, 2018, 140: 12566–12573

    CAS  PubMed  Google Scholar 

  22. Mikhel IS, Ruegger H, Butti P, Camponovo F, Huber D, Mezzetti A. Organometallics, 2008, 27: 2937–2948

    CAS  Google Scholar 

  23. Huber D, Kumar PGA, Pregosin PS, Mezzetti A. Organometallics, 2005, 24: 5221–5223

    CAS  Google Scholar 

  24. Nagashima H, Fukahori T, Aoki K, Itoh K. J Am Chem Soc, 1993, 115: 10430–10431

    CAS  Google Scholar 

  25. Berenguer JR, Lalinde E, Moreno MT, Sánchez S, Torroba J. Inorg Chem, 2012, 51: 11665–11679

    CAS  PubMed  Google Scholar 

  26. Falceto A, Carmona E, Alvarez S. Organometallics, 2014, 33: 6660–6668

    CAS  Google Scholar 

  27. Fornies J, Menjon B, Gomez N, Tomas M. Organometallics, 1992, 11: 1187–1193

    CAS  Google Scholar 

  28. McGuire R Jr., McGuire MC, McMillin DR. Coord Chem Rev, 2010, 254: 2574–2583

    CAS  Google Scholar 

  29. Liu S, Rogachev AY. ChemPhysChem, 2018, 19: 2579–2588

    CAS  PubMed  Google Scholar 

  30. Elschenbroich C, Salzer A. in Organometallics. A Concise Introduction. 2nd ed. Weinheim: VCH, 1992. 346

    Google Scholar 

  31. Belt ST, Helliwell M, Jones WD, Partridge MG, Perutz RN. J Am Chem Soc, 1993, 115: 1429–1440

    CAS  Google Scholar 

  32. Maestri G, Motti E, Della Ca’ N, Malacria M, Derat E, Catellani M. J Am Chem Soc, 2011, 133: 8574–8585

    CAS  PubMed  Google Scholar 

  33. Yamamoto K, Kimura S, Murahashi T. Angew Chem Int Ed, 2016, 55: 5322–5326

    CAS  Google Scholar 

  34. Li Y, Wang WH, He KH, Shi ZJ. Organometallics, 2012, 31: 4397–4400

    CAS  Google Scholar 

  35. Canty AJ, van Koten G. Acc Chem Res, 1995, 28: 406–413

    CAS  Google Scholar 

  36. Falvello LR, Forniés J, Navarro R, Sicilia V, Tomás M. Angew Chem Int Ed Engl, 1990, 29: 891–893

    Google Scholar 

  37. Cámpora J, López JA, Palma P, Valerga P, Spillner E, Carmona E. Angew Chem Int Ed, 1999, 38: 147–151

    Google Scholar 

  38. Vignolle J, Gornitzka H, Donnadieu B, Bourissou D, Bertrand G. Angew Chem Int Ed, 2008, 47: 2271–2274

    CAS  Google Scholar 

  39. Murahashi T, Takase K, Oka M, Ogoshi S. J Am Chem Soc, 2011, 133: 14908–14911

    CAS  PubMed  Google Scholar 

  40. Kocovský P, Vyskocil Š, Císařová I, Sejbal J, Tišlerová I, Smrcina M, Lloyd-Jones GC, Stephen SC, Butts CP, Murray M, Langer V. J Am Chem Soc, 1999, 121: 7714–7715

    Google Scholar 

  41. Yin J, Rainka MP, Zhang XX, Buchwald SL. J Am Chem Soc, 2002, 124: 71162

    Google Scholar 

  42. Sköld C, Kleimark J, Trejos A, Odell LR, Nilsson Lill SO, Norrby PO, Larhed M. Chem Eur J, 2012, 18: 4714–4722

    PubMed  Google Scholar 

  43. Catellani M, Mealli C, Motti E, Paoli P, Perez-Carreño E, Pregosin PS. J Am Chem Soc, 2002, 124: 4336–4346

    CAS  PubMed  Google Scholar 

  44. Della Ca’ N, Fontana M, Motti E, Catellani M. Acc Chem Res, 2016, 49: 1389

    PubMed  Google Scholar 

  45. Tanaka D, Romeril SP, Myers AG. J Am Chem Soc, 2005, 127: 10323–10333

    CAS  PubMed  Google Scholar 

  46. Chen QA, Ye ZS, Duan Y, Zhou YG. Chem Soc Rev, 2013, 42: 497–511

    CAS  PubMed  Google Scholar 

  47. Xie J, Zhou Q. Acta Chim Sin, 2012, 70: 1427

    CAS  Google Scholar 

  48. Wang YQ, Lu SM, Zhou YG. Org Lett, 2005, 7: 3235–3238

    CAS  PubMed  Google Scholar 

  49. Zhou XY, Wang DS, Bao M, Zhou YG. Tetrahedron Lett, 2011, 52: 2826–2829

    CAS  Google Scholar 

  50. Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW. J Am Chem Soc, 2003, 125: 14982–14983

    CAS  PubMed  Google Scholar 

  51. Goulioukina NS, Bondarenko GN, Bogdanov AV, Gavrilov KN, Beletskaya IP. Eur J Org Chem, 2009, 2009(4): 510–515

    Google Scholar 

  52. Chen J, Liu D, Butt N, Li C, Fan D, Liu Y, Zhang W. Angew Chem Int Ed, 2013, 52: 11632–11636

    CAS  Google Scholar 

  53. Jiang W, Zhao Q, Tang W. Chin J Chem, 2018, 36: 153–156

    CAS  Google Scholar 

  54. For coordinative group (acetamido, toluenesulfonamido and benzamido) substituted ketones, trans products could be also obtained with high enantioselectivity owing to the coordination-directed interaction, for some recent examples, see: Lu B, Wu X, Li C, Ding G, Li W, Xie X, Zhang Z. J Org Chem, 2019, 84: 3201–3213

    CAS  PubMed  Google Scholar 

  55. Cotman AE, Lozinšek M, Wang B, Stephan M, Mohar B. Org Lett, 2019, 21: 3644–3648

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Duan Y, Li L, Chen MW, Yu CB, Fan HJ, Zhou YG. J Am Chem Soc, 2014, 136: 7688–7700

    CAS  PubMed  Google Scholar 

  57. The summed interaction between the active Pd-H and phenyl/methyl also evaluated. See details in Supporting Information.

  58. During our preparation of this manuscript, a related irdium-catalyzed hydrogenative desymmetrization of 1,3-diketones was reported by Zhang’s group, please see: The chiral Ir/f-ampha complex catalyst was used, and cis product was obtained. In our work, trans products were observed.. Gong Q, Wen J, Zhang X. Chem Sci, 2019, 10: 6350–6353

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871255, 21532006, 21873096) and Chinese Academy of Sciences (XDB17020300, XDB17010200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Jun Fan or Yong-Gui Zhou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CB., Wang, HD., Song, B. et al. Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones. Sci. China Chem. 63, 215–221 (2020). https://doi.org/10.1007/s11426-019-9601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9601-7

Keywords

Navigation