Skip to main content
Log in

Recent advances in new trifluoromethoxylation reagents

  • Mini Reviews
  • SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The trifluoromethoxy (CF3O) group has become a novel moiety in various fields because of its unique features. However, despite the promising applications, the synthesis of CF3O-containing compounds is still a challenge due to indirect synthetical strategies and volatile reagent which is hard to handle. Until very recently, several innovative reagents were developed to facilitate the trifluoromethoxylation reaction and make CF3O-containing compounds more accessible. This review mainly focuses on the recent advances in new trifluoromethoxylation reagents and their usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiyama T, Yamamoto H. Fluorine-containing materials. In: Tamejiro H, Ed. Organofluorine Compounds: Chemistry and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. 183–233

    Google Scholar 

  2. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem, 2015, 58: 8315–8359

    Article  CAS  PubMed  Google Scholar 

  3. O’Hagan D. J Fluorine Chem, 2010, 131: 1071–1081

    Article  CAS  Google Scholar 

  4. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506

    Article  CAS  PubMed  Google Scholar 

  5. Bégué JP, Bonnet-Delpon D. J Fluorine Chem, 2006, 127: 992–1012

    Article  CAS  Google Scholar 

  6. Ilardi EA, Vitaku E, Njardarson JT. J Med Chem, 2014, 57: 2832–2842

    Article  CAS  PubMed  Google Scholar 

  7. Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  CAS  Google Scholar 

  8. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  9. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  10. Smart BE. J Fluorine Chem, 2001, 109: 3–11

    Article  CAS  Google Scholar 

  11. Manteau B, Pazenok S, Vors JP, Leroux FR. J Fluorine Chem, 2010, 131: 140–158

    Article  CAS  Google Scholar 

  12. Mamada M, Shima H, Yoneda Y, Shimano T, Yamada N, Kakita K, Machida T, Tanaka Y, Aotsuka S, Kumaki D, Tokito S. Chem Mater, 2015, 27: 141–147

    Article  CAS  Google Scholar 

  13. Landelle G, Panossian A, Leroux F. Curr Top Med Chem, 2014, 14: 941–951

    Article  CAS  PubMed  Google Scholar 

  14. Kirsch P, Bremer M. Angew Chem Int Ed, 2000, 39: 4216–4235

    Article  CAS  Google Scholar 

  15. Jeschke P, Baston E, Leroux F. Mini Rev Med Chem, 2007, 7: 1027–1034

    Article  CAS  PubMed  Google Scholar 

  16. Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J Med Chem, 1973, 16: 1207–1216

    Article  CAS  PubMed  Google Scholar 

  17. Park BK, Kitteringham NR, O’Neill PM. Annu Rev Pharmacol Toxicol, 2001, 41: 443–470

    Article  CAS  PubMed  Google Scholar 

  18. Castagnetti E, Schlosser M. Chem Eur J, 2002, 8: 799–804

    Article  CAS  PubMed  Google Scholar 

  19. Marrec O, Billard T, Vors JP, Pazenok S, Langlois BR. J Fluorine Chem, 2010, 131: 200–207

    Article  CAS  Google Scholar 

  20. Hansch C, Leo A, Taft RW. Chem Rev, 1991, 91: 165–195

    Article  CAS  Google Scholar 

  21. Serfaty IW, Hodgins T, McBee ET. J Org Chem, 1972, 37: 2651–2655

    Article  CAS  Google Scholar 

  22. Herkes FE. J Fluorine Chem, 1977, 9: 113–126

    Article  CAS  Google Scholar 

  23. Manteau B, Genix P, Brelot L, Vors JP, Pazenok S, Giornal F, Leuenberger C, Leroux FR. Eur J Org Chem, 2010, 2010(31): 6043–6066

    Article  CAS  Google Scholar 

  24. Shishkov IF, Geise HJ, Van Alsenoy C, Khristenko LV, Vilkov LV, Senyavian VM, van der Veken B, Herrebout W, Lokshin BV, Garkusha OG. J Mol Struct, 2001, 567–568: 339–360

    Article  Google Scholar 

  25. Umemoto T, Adachi K, Ishihara S. J Org Chem, 2007, 72: 6905–6917

    Article  CAS  PubMed  Google Scholar 

  26. Liang A, Han S, Liu Z, Wang L, Li J, Zou D, Wu Y, Wu Y. Chem Eur J, 2016, 22: 5102–5106

    Article  CAS  PubMed  Google Scholar 

  27. Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew Chem Int Ed, 2009, 48: 4332–4336

    Article  CAS  Google Scholar 

  28. Santschi N, Geissbühler P, Togni A. J Fluorine Chem, 2012, 135: 83–86

    Article  CAS  Google Scholar 

  29. Matoušek V, Pietrasiak E, Sigrist L, Czarniecki B, Togni A. Eur J Org Chem, 2014, 2014(15): 3087–3092

    Article  CAS  Google Scholar 

  30. Hojczyk KN, Feng P, Zhan C, Ngai MY. Angew Chem Int Ed, 2014, 53: 14559–14563

    Article  CAS  Google Scholar 

  31. Liu JB, Chen C, Chu L, Chen ZH, Xu XH, Qing FL. Angew Chem Int Ed, 2015, 54: 11839–11842

    Article  CAS  Google Scholar 

  32. Liu JB, Xu XH, Qing FL. Org Lett, 2015, 17: 5048–5051

    Article  CAS  PubMed  Google Scholar 

  33. Zhang QW, Brusoe AT, Mascitti V, Hesp KD, Blakemore DC, Kohrt JT, Hartwig JF. Angew Chem Int Ed, 2016, 55: 9758–9762

    Article  CAS  Google Scholar 

  34. Zhou M, Ni C, He Z, Hu J. Org Lett, 2016, 18: 3754–3757

    Article  CAS  PubMed  Google Scholar 

  35. Chatalova-Sazepin C, Binayeva M, Epifanov M, Zhang W, Foth P, Amador C, Jagdeo M, Boswell BR, Sammis GM. Org Lett, 2016, 18: 4570–4573

    Article  CAS  PubMed  Google Scholar 

  36. Krishanmoorthy S, Schnell SD, Dang H, Fu F, Prakash GKS. J Fluorine Chem, 2017, 203: 130–135

    Article  CAS  Google Scholar 

  37. Zhang QW, Hartwig JF. Chem Commun, 2018, 54: 10124–10127

    Article  CAS  Google Scholar 

  38. Zha GF, Han JB, Hu XQ, Qin HL, Fang WY, Zhang CP. Chem Commun, 2016, 52: 7458–7461

    Article  CAS  Google Scholar 

  39. Barbion J, Pazenok S, Vors JP, Langlois BR, Billard T. Org Process Res Dev, 2014, 18: 1037–1040

    Article  CAS  Google Scholar 

  40. Chen C, Chen P, Liu G. J Am Chem Soc, 2015, 137: 15648–15651

    Article  CAS  PubMed  Google Scholar 

  41. Chen S, Huang Y, Fang X, Li H, Zhang Z, Hor TSA, Weng Z. Dalton Trans, 2015, 44: 19682–19686

    Article  CAS  PubMed  Google Scholar 

  42. Chen C, Luo Y, Fu L, Chen P, Lan Y, Liu G. J Am Chem Soc, 2018, 140: 1207–1210

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Chen J, Lin JH, Xiao JC, Gu YC. iScience, 2018, 5: 110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang C, Liang T, Harada S, Lee E, Ritter T. J Am Chem Soc, 2011, 133: 13308–13310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farnham WB, Smart BE, Middleton WJ, Calabrese JC, Dixon DA. J Am Chem Soc, 1985, 107: 4565–4567

    Article  CAS  Google Scholar 

  46. Arlt J, Jansen M. Chem Ber, 1991, 124: 321–327

    Article  CAS  Google Scholar 

  47. Sokolenko TM, Davydova YA, Yagupolskii YL. J Fluorine Chem, 2012, 136: 20–25

    Article  CAS  Google Scholar 

  48. Qi X, Chen P, Liu G. Angew Chem Int Ed, 2017, 56: 9517–9521

    Article  CAS  Google Scholar 

  49. Kolomeitsev AA, Vorobyev M, Gillandt H. Tetrahedron Lett, 2008, 49: 449–454

    Article  CAS  Google Scholar 

  50. Katsuhara Y, DesMarteau DD. J Am Chem Soc, 1980, 102: 2681–2686

    Article  CAS  Google Scholar 

  51. Noftle RE, Cady GH. Inorg Chem, 1965, 4: 1010–1012

    Article  CAS  Google Scholar 

  52. Taylor SL, Martin JC. J Org Chem, 1987, 52: 4147–4156

    Article  CAS  Google Scholar 

  53. Marrec O, Billard T, Vors JP, Pazenok S, Langlois BR. Adv Synth Catal, 2010, 352: 2831–2837

    Article  CAS  Google Scholar 

  54. Koller R, Huchet Q, Battaglia P, Welch JM, Togni A. Chem Commun, 2009, 84: 5993

    Article  CAS  Google Scholar 

  55. Yang H, Wang F, Jiang X, Zhou Y, Xu X, Tang P. Angew Chem Int Ed, 2018, 57: 13266–13270

    Article  CAS  Google Scholar 

  56. Wang F, Xu P, Cong F, Tang P. Chem Sci, 2018, 9: 8836–8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cong F, Wei Y, Tang P. Chem Commun, 2018, 54: 4473–4476

    Article  CAS  Google Scholar 

  58. Jiang X, Deng Z, Tang P. Angew Chem Int Ed, 2018, 57: 292–295

    Article  CAS  Google Scholar 

  59. Guo S, Cong F, Guo R, Wang L, Tang P. Nat Chem, 2017, 9: 546–551

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Wei Y, Tang P. J Am Chem Soc, 2018, 140: 15194–15199

    Article  CAS  PubMed  Google Scholar 

  61. Umemoto T. Chem Rev, 1996, 96: 1757–1778

    Article  CAS  PubMed  Google Scholar 

  62. Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew Chem, 2009, 121: 4396–4400

    Article  Google Scholar 

  63. Brantley JN, Samant AV, Toste FD. ACS Cent Sci, 2016, 2: 341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu P, Wang F, Fan G, Xu X, Tang P. Angew Chem Int Ed, 2017, 56: 1101–1104

    Article  CAS  Google Scholar 

  65. Venturini F, Navarrini W, Famulari A, Sansotera M, Dardani P, Tortelli V. J Fluorine Chem, 2012, 140: 43–48

    Article  CAS  Google Scholar 

  66. Jelier BJ, Tripet PF, Pietrasiak E, Franzoni I, Jeschke G, Togni A. Angew Chem Int Ed, 2018, 57: 13784–13789

    Article  CAS  Google Scholar 

  67. Zheng W, Lee JW, Morales-Rivera CA, Liu P, Ngai MY. Angew Chem Int Ed, 2018, 57: 13795–13799

    Article  CAS  Google Scholar 

  68. Zheng W, Morales-Rivera CA, Lee JW, Liu P, Ngai MY. Angew Chem Int Ed, 2018, 57: 9645–9649

    Article  CAS  Google Scholar 

  69. Xu P, Guo S, Wang L, Tang P. Angew Chem Int Ed, 2014, 53: 5955–5958

    Article  CAS  Google Scholar 

  70. Fiederling N, Haller J, Schramm H. Org Process Res Dev, 2013, 17: 318–319

    Article  CAS  Google Scholar 

  71. Zhou M, Ni C, Zeng Y, Hu J. J Am Chem Soc, 2018, 140: 6801–6805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0602900), the National Natural Science Foundation of China (21522205, 21672110), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tang, P. Recent advances in new trifluoromethoxylation reagents. Sci. China Chem. 62, 525–532 (2019). https://doi.org/10.1007/s11426-018-9402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9402-x

Keywords

Navigation