Skip to main content
Log in

Supramolecular gelator based on a [c2]daisy chain rotaxane: efficient gel-solution transition by ring-sliding motion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A supramolecular gelator based on the bistable [c2]daisy chain rotaxane is designed and synthesized. The reversible actuation of the [c2]daisy chain renders the formed supramolecular gel with acid/base-responsive switching between gel and monomer solution. The efficient switching process is attributed to the ring-sliding effect of the rotaxane in response to acid/base stimuli. The ring-inhibited hydrogen bonding stacking results in a nearly quantitatively disassembly of the gel network after addition of base which is hard to be realized by traditional heating strategy in hydrogen-bonding-supported gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q, Chen D, Tian H. Sci China Chem, 2018, 61: doi: 10. 1007/s11426-018-9267-3

  2. Ma X, Tian H. Acc Chem Res, 2014, 47: 1971–1981

    Article  CAS  PubMed  Google Scholar 

  3. Koch JG, Brennessel WW, Kraft BM. Organometallics, 2017, 36: 594–604

    Article  CAS  Google Scholar 

  4. Yan X, Jiang B, Cook TR, Zhang Y, Li J, Yu Y, Huang F, Yang HB, Stang PJ. J Am Chem Soc, 2013, 135: 16813–16816

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Zhang YM, Wang HY, Li H, Liu Y. Macromolecules, 2017, 50: 1141–1146

    Article  CAS  Google Scholar 

  6. Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew Chem Int Ed, 2012, 51: 7011–7015

    Article  CAS  Google Scholar 

  7. Taylor DL, In Het Panhuis M. Adv Mater, 2016, 28: 9060–9093

    Article  CAS  Google Scholar 

  8. Zheng W, Chen LJ, Yang G, Sun B, Wang X, Jiang B, Yin GQ, Zhang L, Li X, Liu M, Chen G, Yang HB. J Am Chem Soc, 2016, 138: 4927–4937

    Article  CAS  PubMed  Google Scholar 

  9. Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu XY, Lin C, Wang L. J Am Chem Soc, 2016, 138: 6643–6649

    Article  CAS  PubMed  Google Scholar 

  10. Qiu Y, Park K. Adv Drug Deliver Rev, 2012, 64: 49–60

    Article  Google Scholar 

  11. Ma X, Zhao Y. Chem Rev, 2015, 115: 7794–7839

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. Sci China Chem, 2017, 60: 628–634

    Article  CAS  Google Scholar 

  13. Rambarran T, Bertrand A, Gonzaga F, Boisson F, Bernard J, Fleury E, Ganachaud F, Brook MA. Chem Commun, 2016, 52: 6681–6684

    Article  CAS  Google Scholar 

  14. Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L. J Appl Polym Sci, 2013, 129: 2435–2442

    Article  CAS  Google Scholar 

  15. Feng Q, Wei K, Zhang K, Yang B, Tian F, Wang G, Bian L. NPG Asia Mater, 2018, 10: e455

    Article  Google Scholar 

  16. Guo J, Yuan C, Guo M, Wang L, Yan F. Chem Sci, 2014, 5: 3261–3266

    Article  CAS  Google Scholar 

  17. Anderson CA, Jones AR, Briggs EM, Novitsky EJ, Kuykendall DW, Sottos NR, Zimmerman SC. J Am Chem Soc, 2013, 135: 7288–7295

    Article  CAS  PubMed  Google Scholar 

  18. Hu XY, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C, Wang L. Polym Chem, 2012, 3: 3060–3063b

    Article  CAS  Google Scholar 

  19. Zhang Q, Xu TY, Zhao CX, Jin WH, Wang Q, Qu DH. Chem Asian J, 2017, 12: 2549–2553

    Article  CAS  PubMed  Google Scholar 

  20. Ji X, Zhu K, Yan X, Ma Y, Li J, Hu B, Yu Y, Huang F. Macromol Rapid Commun, 2012, 33: 1197–1202

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Xu Z, Wang T, Liu X, Lin Y, Shen YZ, Lin C, Wang L. J Photochem Photobiol AChem, 2018, 355: 60–66

    Article  CAS  Google Scholar 

  22. Ustinov A, Weissman H, Shirman E, Pinkas I, Zuo X, Rybtchinski B. J Am Chem Soc, 2011, 133: 16201–16211

    Article  CAS  PubMed  Google Scholar 

  23. Obert E, Bellot M, Bouteiller L, Andrioletti F, Lehen-Ferrenbach C, Boué F. J Am Chem Soc, 2007, 129: 15601–15605

    Article  CAS  PubMed  Google Scholar 

  24. Zhang CW, Ou B, Jiang ST, Yin GQ, Chen LJ, Xu L, Li X, Yang HB. Polym Chem, 2018, 9: 2021–2030

    Article  CAS  Google Scholar 

  25. Zhang Q, Wang WZ, Yu JJ, Qu DH, Tian H. Adv Mater, 2017, 29: 1604948

    Article  CAS  Google Scholar 

  26. Zhang Q, Qu DH, Wang QC, Tian H. Angew Chem Int Ed, 2015, 54: 15789–15793

    Article  CAS  Google Scholar 

  27. Wang WZ, Gao C, Zhang Q, Ye XH, Qu DH. Chem Asian J, 2017, 12: 410–414

    Article  CAS  PubMed  Google Scholar 

  28. Han Z, Gao Y, Zhai X, Peng J, Tian A, Zhao Y, Hu C. Cryst Growth Des, 2016, 9: 1225–1234

    Article  CAS  Google Scholar 

  29. Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW. Nat Chem, 2013, 5: 42–47

    Article  CAS  PubMed  Google Scholar 

  30. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Angew Chem Int Ed, 2010, 47: 6114–6127

    Article  Google Scholar 

  31. Priimagi A, Cavallo G, Metrangolo P, Resnati G. Acc Chem Res, 2013, 46: 2686–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji X, Shi B, Wang H, Xia D, Jie K, Wu ZL, Huang F. Adv Mater, 2015, 27: 8062–8066

    Article  CAS  PubMed  Google Scholar 

  33. Hu XY, Wu X, Wang S, Chen D, Xia W, Lin C, Pan Y, Wang L. Polym Chem, 2013, 4: 4292–4297

    Article  CAS  Google Scholar 

  34. Zhang Q, Shi CY, Qu DH, Long YT, Feringa BL, Tian H. Sci Adv, 2018, 4: eaat8192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Zhang YY, Dai XY, Shi XH, Liu WG. Sci China Tech Sci, 2017, 60: 78–83

    Article  CAS  Google Scholar 

  36. Wu X, Yu Y, Gao L, Hu XY, Wang L. Org Chem Front, 2016, 3: 966–970

    Article  CAS  Google Scholar 

  37. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW. Adv Mater, 2000, 12: 874–878

    Article  CAS  Google Scholar 

  38. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Nature, 2008, 451: 977–980

    Article  CAS  PubMed  Google Scholar 

  39. Yang S, Luan Z, Gao C, Yu J, Qu D. Sci China Chem, 2018, 61: 306–310

    Article  CAS  Google Scholar 

  40. Cui JS, Ba QK, Ke H, Valkonen A, Rissanen K, Jiang W. Angew Chem Int Ed, 2018, 57: 7809–7814

    Article  CAS  Google Scholar 

  41. Stoddart JF. Angew Chem Int Ed, 2017, 56: 11094–11125

    Article  CAS  Google Scholar 

  42. Zhang ZJ, Zhang HY, Wang H, Liu Y. Angew Chem Int Ed, 2011, 50: 10834–10838

    Article  CAS  Google Scholar 

  43. Zhang H, Hu J, Qu DH. Org Lett, 2012, 14: 2334–2337

    Article  CAS  PubMed  Google Scholar 

  44. Cao ZQ, Miao Q, Zhang Q, Li H, Qu DH, Tian H. Chem Commun, 2015, 51: 4973–4976

    Article  CAS  Google Scholar 

  45. Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H. Org Lett, 2017, 19: 1618–1621

    Article  CAS  PubMed  Google Scholar 

  46. Dong S, Yuan J, Huang F. Chem Sci, 2014, 5: 247–252

    Article  CAS  Google Scholar 

  47. Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H. Polym Chem, 2016, 7: 2166–2170

    Article  CAS  Google Scholar 

  48. Zhang Q, Qu DH. ChemPhysChem, 2016, 17: 1759–1768

    Article  CAS  PubMed  Google Scholar 

  49. Cao ZQ, Luan ZL, Zhang Q, Gu RR, Ren J, Qu DH. Polym Chem, 2016, 7: 1866–1870

    Article  CAS  Google Scholar 

  50. Hsueh SY, Kuo CT, Lu TW, Lai CC, Liu YH, Hsu HF, Peng SM, Chen C, Chiu SH. Angew Chem Int Ed, 2010, 49: 9170–9173

    Article  CAS  Google Scholar 

  51. Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, Buhler E, Giuseppone N. J Am Chem Soc, 2017, 139: 14825–14828

    Article  CAS  PubMed  Google Scholar 

  52. Bruns CJ, Stoddart JF. Acc Chem Res, 2014, 47: 2186–2199

    Article  CAS  PubMed  Google Scholar 

  53. Stoddart JF. Chem Soc Rev, 2009, 38: 1802–1820

    Article  CAS  PubMed  Google Scholar 

  54. Chang JC, Tseng SH, Lai CC, Liu YH, Peng SM, Chiu SH. Nat Chem, 2017, 9: 128–134

    Article  CAS  Google Scholar 

  55. Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F. Adv Mater, 2012, 24: 362–369

    Article  CAS  PubMed  Google Scholar 

  56. Yan X, Xu D, Chen J, Zhang M, Hu B, Yu Y, Huang F. Polym Chem, 2013, 4: 3312–3322

    Article  CAS  Google Scholar 

  57. Wang H, Ji X, Li Z, Zhu CN, Yang X, Li T, Wu ZL, Huang F. Mater Chem Front, 2017, 1: 167–171

    Article  CAS  Google Scholar 

  58. Lin HY, Snider BB. J Org Chem, 2012, 77: 4832–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li F, Li Y, Zhou Z, Lv S, Deng Q, Xu X, Yin L. ACS Appl Mater Interfaces, 2017, 9: 23586–23601

    Article  CAS  PubMed  Google Scholar 

  60. Coutrot F, Romuald C, Busseron E. Org Lett, 2008, 10: 3741–3744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21790361, 21871084, 21672060), the Fundamental Research Funds for the Central Universities (WJ1616011, WJ1213007, 222201717003), and the Programme of Introducing Talents of Discipline to Universities (B16017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahui Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Zhang, Q., Rao, S. et al. Supramolecular gelator based on a [c2]daisy chain rotaxane: efficient gel-solution transition by ring-sliding motion. Sci. China Chem. 62, 245–250 (2019). https://doi.org/10.1007/s11426-018-9351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9351-3

Keywords

Navigation